mmdeploy/csrc/device/cuda/default_allocator.h
lvhan028 36124f6205
Merge sdk (#251)
* check in cmake

* move backend_ops to csrc/backend_ops

* check in preprocess, model, some codebase and their c-apis

* check in CMakeLists.txt

* check in parts of test_csrc

* commit everything else

* add readme

* update core's BUILD_INTERFACE directory

* skip codespell on third_party

* update trt_net and ort_net's CMakeLists

* ignore clion's build directory

* check in pybind11

* add onnx.proto. Remove MMDeploy's dependency on ncnn's source code

* export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON

* remove useless message

* target include directory is wrong

* change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net

* skip install directory

* update project's cmake

* remove useless code

* set CMAKE_BUILD_TYPE to Release by force if it isn't set by user

* update custom ops CMakeLists

* pass object target's source lists

* fix lint end-of-file

* fix lint: trailing whitespace

* fix codespell hook

* remove bicubic_interpolate to csrc/backend_ops/

* set MMDEPLOY_BUILD_SDK OFF

* change custom ops build command

* add spdlog installation command

* update docs on how to checkout pybind11

* move bicubic_interpolate to backend_ops/tensorrt directory

* remove useless code

* correct cmake

* fix typo

* fix typo

* fix install directory

* correct sdk's readme

* set cub dir when cuda version < 11.0

* change directory where clang-format will apply to

* fix build command

* add .clang-format

* change clang-format style from google to file

* reformat csrc/backend_ops

* format sdk's code

* turn off clang-format for some files

* add -Xcompiler=-fno-gnu-unique

* fix trt topk initialize

* check in config for sdk demo

* update cmake script and csrc's readme

* correct config's path

* add cuda include directory, otherwise compile failed in case of tensorrt8.2

* clang-format onnx2ncnn.cpp

Co-authored-by: zhangli <lzhang329@gmail.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00

70 lines
2.1 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#ifndef MMDEPLOY_SRC_DEVICE_CUDA_DEFAULT_ALLOCATOR_H_
#define MMDEPLOY_SRC_DEVICE_CUDA_DEFAULT_ALLOCATOR_H_
#include <cuda_runtime.h>
#include <atomic>
#include <chrono>
#include "core/logger.h"
namespace mmdeploy::cuda {
class DefaultAllocator {
public:
DefaultAllocator() = default;
~DefaultAllocator() {
ERROR("=== CUDA Default Allocator ===");
ERROR(" Allocation: count={}, size={}MB, time={}ms", alloc_count_,
alloc_size_ / (1024 * 1024.f), alloc_time_ / 1000000.f);
ERROR("Deallocation: count={}, size={}MB, time={}ms", dealloc_count_,
dealloc_size_ / (1024 * 1024.f), dealloc_time_ / 1000000.f);
}
[[nodiscard]] void* Allocate(std::size_t n) {
void* p{};
auto t0 = std::chrono::high_resolution_clock::now();
auto ret = cudaMalloc(&p, n);
auto t1 = std::chrono::high_resolution_clock::now();
alloc_time_ += (int64_t)std::chrono::duration<double, std::nano>(t1 - t0).count();
if (ret != cudaSuccess) {
ERROR("error allocating cuda memory: {}", cudaGetErrorString(ret));
return nullptr;
}
alloc_count_ += 1;
alloc_size_ += n;
return p;
}
void Deallocate(void* p, std::size_t n) {
(void)n;
auto t0 = std::chrono::high_resolution_clock::now();
auto ret = cudaFree(p);
auto t1 = std::chrono::high_resolution_clock::now();
dealloc_time_ += (int64_t)std::chrono::duration<double, std::nano>(t1 - t0).count();
if (ret != cudaSuccess) {
ERROR("error deallocating cuda memory: {}", cudaGetErrorString(ret));
return;
}
dealloc_count_ += 1;
dealloc_size_ += n;
}
private:
std::atomic<std::size_t> alloc_count_;
std::atomic<std::size_t> alloc_size_;
std::atomic<std::size_t> alloc_time_;
std::atomic<std::size_t> dealloc_count_;
std::atomic<std::size_t> dealloc_size_;
std::atomic<std::size_t> dealloc_time_;
};
inline DefaultAllocator& gDefaultAllocator() {
static DefaultAllocator v;
return v;
}
} // namespace mmdeploy::cuda
#endif // MMDEPLOY_SRC_DEVICE_CUDA_DEFAULT_ALLOCATOR_H_