mmdeploy/tests/test_mmseg/test_mmseg_apis.py

229 lines
7.7 KiB
Python

import importlib
import os
import tempfile
import mmcv
import numpy as np
import pytest
import torch
import mmdeploy.apis.ncnn as ncnn_apis
import mmdeploy.apis.onnxruntime as ort_apis
import mmdeploy.apis.ppl as ppl_apis
import mmdeploy.apis.tensorrt as trt_apis
import mmdeploy.apis.utils as api_utils
from mmdeploy.utils.constants import Backend, Codebase
from mmdeploy.utils.test import SwitchBackendWrapper
@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda')
@pytest.mark.skipif(
not importlib.util.find_spec('tensorrt'), reason='requires tensorrt')
def test_TensorRTSegmentor():
# force add backend wrapper regardless of plugins
from mmdeploy.apis.tensorrt.tensorrt_utils import TRTWrapper
trt_apis.__dict__.update({'TRTWrapper': TRTWrapper})
# simplify backend inference
outputs = {
'output': torch.rand(1, 1, 64, 64).cuda(),
}
with SwitchBackendWrapper(TRTWrapper) as wrapper:
wrapper.set(outputs=outputs)
from mmdeploy.mmseg.apis.inference import TensorRTSegmentor
trt_segmentor = TensorRTSegmentor('', ['' for i in range(19)],
np.empty([19], dtype=int), 0)
trt_segmentor.output_name = 'output'
imgs = torch.rand(1, 3, 64, 64).cuda()
img_metas = [[{
'ori_shape': [64, 64, 3],
'img_shape': [64, 64, 3],
'scale_factor': [2.09, 1.87, 2.09, 1.87],
}]]
results = trt_segmentor.forward(imgs, img_metas)
assert results is not None, 'failed to get output using'
'TensorRTSegmentor'
@pytest.mark.skipif(
not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime')
def test_ONNXRuntimeSegmentor():
# force add backend wrapper regardless of plugins
from mmdeploy.apis.onnxruntime.onnxruntime_utils import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
# simplify backend inference
outputs = torch.rand(1, 1, 64, 64)
with SwitchBackendWrapper(ORTWrapper) as wrapper:
wrapper.set(outputs=outputs)
from mmdeploy.mmseg.apis.inference import ONNXRuntimeSegmentor
ort_segmentor = ONNXRuntimeSegmentor('', ['' for i in range(19)],
np.empty([19], dtype=int), 0)
imgs = torch.rand(1, 1, 64, 64)
img_metas = [[{
'ori_shape': [64, 64, 3],
'img_shape': [64, 64, 3],
'scale_factor': [2.09, 1.87, 2.09, 1.87],
}]]
results = ort_segmentor.forward(imgs, img_metas)
assert results is not None, 'failed to get output using '
'ONNXRuntimeSegmentor'
@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda')
@pytest.mark.skipif(
not importlib.util.find_spec('pyppl'), reason='requires pyppl')
def test_PPLSegmentor():
# force add backend wrapper regardless of plugins
from mmdeploy.apis.ppl.ppl_utils import PPLWrapper
ppl_apis.__dict__.update({'PPLWrapper': PPLWrapper})
# simplify backend inference
outputs = torch.rand(1, 1, 64, 64)
with SwitchBackendWrapper(PPLWrapper) as wrapper:
wrapper.set(outputs=outputs)
from mmdeploy.mmseg.apis.inference import PPLSegmentor
ppl_segmentor = PPLSegmentor(['', ''], ['' for i in range(19)],
np.empty([19], dtype=int), 0)
imgs = torch.rand(1, 3, 64, 64)
img_metas = [[{
'ori_shape': [64, 64, 3],
'img_shape': [64, 64, 3],
'scale_factor': [2.09, 1.87, 2.09, 1.87],
}]]
results = ppl_segmentor.forward(imgs, img_metas)
assert results is not None, 'failed to get output using PPLSegmentor'
@pytest.mark.skipif(
not importlib.util.find_spec('ncnn'), reason='requires ncnn')
def test_NCNNSegmentor():
# force add backend wrapper regardless of plugins
from mmdeploy.apis.ncnn.ncnn_utils import NCNNWrapper
ncnn_apis.__dict__.update({'NCNNWrapper': NCNNWrapper})
# simplify backend inference
outputs = {
'output': torch.rand(1, 1, 64, 64),
}
with SwitchBackendWrapper(NCNNWrapper) as wrapper:
wrapper.set(outputs=outputs)
from mmdeploy.mmseg.apis.inference import NCNNSegmentor
ncnn_segmentor = NCNNSegmentor(['', ''], ['' for i in range(19)],
np.empty([19], dtype=int), 0)
imgs = [torch.rand(1, 3, 32, 32)]
img_metas = [[{
'ori_shape': [64, 64, 3],
'img_shape': [64, 64, 3],
'scale_factor': [2.09, 1.87, 2.09, 1.87],
}]]
results = ncnn_segmentor.forward(imgs, img_metas)
assert results is not None, 'failed to get output using NCNNSegmentor'
model_cfg = 'tests/test_mmseg/data/model.py'
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type='onnxruntime'),
codebase_config=dict(type='mmseg', task='Segmentation'),
onnx_config=dict(
type='onnx',
export_params=True,
keep_initializers_as_inputs=False,
opset_version=11,
input_shape=None,
input_names=['input'],
output_names=['output'])))
input_img = torch.rand(1, 3, 64, 64)
img_metas = [[{
'ori_shape': [64, 64, 3],
'img_shape': [64, 64, 3],
'scale_factor': [2.09, 1.87, 2.09, 1.87],
}]]
input = {'img': input_img, 'img_metas': img_metas}
def test_init_pytorch_model():
model = api_utils.init_pytorch_model(
Codebase.MMSEG, model_cfg=model_cfg, device='cpu')
assert model is not None
def create_backend_model():
if not importlib.util.find_spec('onnxruntime'):
pytest.skip('requires onnxruntime')
from mmdeploy.apis.onnxruntime.onnxruntime_utils import ORTWrapper
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper})
# simplify backend inference
wrapper = SwitchBackendWrapper(ORTWrapper)
wrapper.set(model_cfg=model_cfg, deploy_cfg=deploy_cfg)
model = api_utils.init_backend_model([''], model_cfg, deploy_cfg)
return model, wrapper
@pytest.mark.skipif(
not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime')
def test_init_backend_model():
model, wrapper = create_backend_model()
assert model is not None
# Recovery
wrapper.recover()
@pytest.mark.skipif(
not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime')
def test_run_inference():
model, wrapper = create_backend_model()
result = api_utils.run_inference(Codebase.MMSEG, input, model)
assert result is not None
assert result[0] is not None
# Recovery
wrapper.recover()
@pytest.mark.skipif(
not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime')
def test_visualize():
model, wrapper = create_backend_model()
result = api_utils.run_inference(Codebase.MMSEG, input, model)
with tempfile.TemporaryDirectory() as dir:
filename = dir + 'tmp.jpg'
numpy_img = np.random.rand(64, 64, 3)
api_utils.visualize(Codebase.MMSEG, numpy_img, result, model, filename,
Backend.ONNXRUNTIME)
assert os.path.exists(filename)
# Recovery
wrapper.recover()
@pytest.mark.skipif(
not importlib.util.find_spec('onnxruntime'), reason='requires onnxruntime')
def test_inference_model():
numpy_img = np.random.rand(64, 64, 3)
with tempfile.TemporaryDirectory() as dir:
filename = dir + 'tmp.jpg'
model, wrapper = create_backend_model()
from mmdeploy.apis.inference import inference_model
inference_model(model_cfg, deploy_cfg, model, numpy_img, 'cpu',
Backend.ONNXRUNTIME, filename, False)
assert os.path.exists(filename)
# Recovery
wrapper.recover()