mmdeploy/csrc/codebase/mmcls/softmax.cpp
lvhan028 36124f6205
Merge sdk (#251)
* check in cmake

* move backend_ops to csrc/backend_ops

* check in preprocess, model, some codebase and their c-apis

* check in CMakeLists.txt

* check in parts of test_csrc

* commit everything else

* add readme

* update core's BUILD_INTERFACE directory

* skip codespell on third_party

* update trt_net and ort_net's CMakeLists

* ignore clion's build directory

* check in pybind11

* add onnx.proto. Remove MMDeploy's dependency on ncnn's source code

* export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON

* remove useless message

* target include directory is wrong

* change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net

* skip install directory

* update project's cmake

* remove useless code

* set CMAKE_BUILD_TYPE to Release by force if it isn't set by user

* update custom ops CMakeLists

* pass object target's source lists

* fix lint end-of-file

* fix lint: trailing whitespace

* fix codespell hook

* remove bicubic_interpolate to csrc/backend_ops/

* set MMDEPLOY_BUILD_SDK OFF

* change custom ops build command

* add spdlog installation command

* update docs on how to checkout pybind11

* move bicubic_interpolate to backend_ops/tensorrt directory

* remove useless code

* correct cmake

* fix typo

* fix typo

* fix install directory

* correct sdk's readme

* set cub dir when cuda version < 11.0

* change directory where clang-format will apply to

* fix build command

* add .clang-format

* change clang-format style from google to file

* reformat csrc/backend_ops

* format sdk's code

* turn off clang-format for some files

* add -Xcompiler=-fno-gnu-unique

* fix trt topk initialize

* check in config for sdk demo

* update cmake script and csrc's readme

* correct config's path

* add cuda include directory, otherwise compile failed in case of tensorrt8.2

* clang-format onnx2ncnn.cpp

Co-authored-by: zhangli <lzhang329@gmail.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00

57 lines
1.9 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "codebase/mmcls/mmcls.h"
#include "core/tensor.h"
#include "core/utils/formatter.h"
#include "experimental/module_adapter.h"
using std::vector;
namespace mmdeploy::mmcls {
class SoftmaxPost : public MMClsPostprocess {
public:
explicit SoftmaxPost(const Value& cfg) : MMClsPostprocess(cfg) {}
Result<Value> operator()(const Value& data, const Value& infer_res) {
DEBUG("data: {}, infer_res: {}", data, infer_res);
auto output_tensor = infer_res["cls"].get<Tensor>();
assert(output_tensor.shape().size() >= 2);
auto batch_size = (int)output_tensor.shape()[0];
auto class_num = (int)output_tensor.shape()[1];
if (output_tensor.device().is_host()) {
vector<float> scores(output_tensor.data<float>(),
output_tensor.data<float>() + output_tensor.size());
OUTCOME_TRY(stream().Wait());
return GetLabels(data, scores, batch_size, class_num);
} else {
vector<float> scores(output_tensor.size());
OUTCOME_TRY(output_tensor.CopyTo(scores.data(), stream()));
OUTCOME_TRY(stream().Wait());
return GetLabels(data, scores, batch_size, class_num);
}
}
private:
static Value GetLabels(const Value& data, const vector<float>& scores, int batch_size,
int class_num) {
ClassifyOutput output;
auto score_ptr = scores.data();
for (int i = 0; i < batch_size; ++i, score_ptr += class_num) {
auto max_score_ptr = std::max_element(score_ptr, score_ptr + class_num);
ClassifyOutput::Label label{int(max_score_ptr - score_ptr), *max_score_ptr};
DEBUG("label_id: {}, score: {}", label.label_id, label.score);
output.labels.push_back(label);
}
return to_value(std::move(output));
}
private:
float thres_{0.f};
};
REGISTER_CODEBASE_MODULE(MMClsPostprocess, SoftmaxPost);
} // namespace mmdeploy::mmcls