mmdeploy/csrc/codebase/mmocr/resize_ocr.cpp
lvhan028 36124f6205
Merge sdk (#251)
* check in cmake

* move backend_ops to csrc/backend_ops

* check in preprocess, model, some codebase and their c-apis

* check in CMakeLists.txt

* check in parts of test_csrc

* commit everything else

* add readme

* update core's BUILD_INTERFACE directory

* skip codespell on third_party

* update trt_net and ort_net's CMakeLists

* ignore clion's build directory

* check in pybind11

* add onnx.proto. Remove MMDeploy's dependency on ncnn's source code

* export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON

* remove useless message

* target include directory is wrong

* change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net

* skip install directory

* update project's cmake

* remove useless code

* set CMAKE_BUILD_TYPE to Release by force if it isn't set by user

* update custom ops CMakeLists

* pass object target's source lists

* fix lint end-of-file

* fix lint: trailing whitespace

* fix codespell hook

* remove bicubic_interpolate to csrc/backend_ops/

* set MMDEPLOY_BUILD_SDK OFF

* change custom ops build command

* add spdlog installation command

* update docs on how to checkout pybind11

* move bicubic_interpolate to backend_ops/tensorrt directory

* remove useless code

* correct cmake

* fix typo

* fix typo

* fix install directory

* correct sdk's readme

* set cub dir when cuda version < 11.0

* change directory where clang-format will apply to

* fix build command

* add .clang-format

* change clang-format style from google to file

* reformat csrc/backend_ops

* format sdk's code

* turn off clang-format for some files

* add -Xcompiler=-fno-gnu-unique

* fix trt topk initialize

* check in config for sdk demo

* update cmake script and csrc's readme

* correct config's path

* add cuda include directory, otherwise compile failed in case of tensorrt8.2

* clang-format onnx2ncnn.cpp

Co-authored-by: zhangli <lzhang329@gmail.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00

144 lines
4.7 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include <set>
#include "archive/json_archive.h"
#include "archive/value_archive.h"
#include "core/tensor.h"
#include "core/utils/formatter.h"
#include "opencv2/imgproc.hpp"
#include "preprocess/cpu/opencv_utils.h"
#include "preprocess/transform/resize.h"
using namespace std;
namespace mmdeploy {
class ResizeOCRImpl : public Module {
public:
explicit ResizeOCRImpl(const Value& args) noexcept {
height_ = args.value("height", height_);
min_width_ = args.value("min_width", min_width_);
max_width_ = args.value("max_width", max_width_);
keep_aspect_ratio_ = args.value("keep_aspect_ratio", keep_aspect_ratio_);
img_pad_value_ = args.value("img_pad_value", img_pad_value_);
width_downsample_ratio_ = args.value("width_downsample_ratio", width_downsample_ratio_);
backend_ = args.value("backend", backend_);
}
~ResizeOCRImpl() override = default;
Result<Value> Process(const Value& input) {
INFO("input: {}", input);
auto dst_height = height_;
auto dst_min_width = min_width_;
auto dst_max_width = max_width_;
std::vector<int> img_shape; // NHWC
from_value(input["img_shape"], img_shape);
std::vector<int> ori_shape; // NHWC
from_value(input["ori_shape"], ori_shape);
auto ori_height = ori_shape[1];
auto ori_width = ori_shape[2];
auto valid_ratio = 1.f;
auto img = input["img"].get<Tensor>();
Tensor img_resize;
if (keep_aspect_ratio_) {
auto new_width = static_cast<int>(std::ceil(1.f * dst_height / ori_height * ori_width));
auto width_divisor = static_cast<int>(1 / width_downsample_ratio_);
if (new_width % width_divisor != 0) {
new_width = std::round(1.f * new_width / width_divisor) * width_divisor;
}
if (dst_min_width > 0) {
new_width = std::max(dst_min_width, new_width);
}
if (dst_max_width > 0) {
valid_ratio = std::min(1., 1. * new_width / dst_max_width);
auto resize_width = std::min(dst_max_width, new_width);
img_resize = ResizeImage(img, dst_height, resize_width);
if (new_width < dst_max_width) {
img_resize = PadImage(img_resize, dst_height, dst_max_width);
}
} else {
img_resize = ResizeImage(img, dst_height, new_width);
}
} else {
img_resize = ResizeImage(img, dst_height, dst_max_width);
}
Value output = input;
output["img"] = img_resize;
output["resize_shape"] = to_value(img_resize.desc().shape);
output["pad_shape"] = output["resize_shape"];
output["valid_ratio"] = valid_ratio;
INFO("output: {}", to_json(output).dump(2));
return output;
}
Tensor ResizeImage(const Tensor& img, int dst_h, int dst_w) {
TensorDesc desc = img.desc();
assert(desc.shape.size() == 4);
assert(desc.data_type == DataType::kINT8);
int h = desc.shape[1];
int w = desc.shape[2];
int c = desc.shape[3];
assert(c == 3 or c == 1);
cv::Mat src_mat, dst_mat;
if (3 == c) { // rgb
src_mat = cv::Mat(h, w, CV_8UC3, const_cast<uint8_t*>(img.data<uint8_t>()));
} else { // gray
src_mat = cv::Mat(h, w, CV_8UC1, const_cast<uint8_t*>(img.data<uint8_t>()));
}
cv::Size size{dst_w, dst_h};
cv::resize(src_mat, dst_mat, size, cv::INTER_LINEAR);
return Tensor({desc.device, desc.data_type, {1, dst_h, dst_w, c}, ""},
{dst_mat.data, [mat = dst_mat](void* ptr) {}});
}
Tensor PadImage(const Tensor& src_img, int height, int width) {
cv::Mat src_mat = cpu::Tensor2CVMat(src_img);
cv::Mat dst_mat;
auto pad_h = std::max(0, height - src_mat.rows);
auto pad_w = std::max(0, width - src_mat.cols);
cv::copyMakeBorder(src_mat, dst_mat, 0, pad_h, 0, pad_w, cv::BORDER_CONSTANT, img_pad_value_);
return cpu::CVMat2Tensor(dst_mat);
}
protected:
int height_{-1};
int min_width_{-1};
int max_width_{-1};
bool keep_aspect_ratio_{true};
float img_pad_value_{0};
float width_downsample_ratio_{1. / 16};
std::string backend_;
};
class ResizeOCRImplCreator : public Creator<ResizeOCRImpl> {
public:
const char* GetName() const override { return "cpu"; }
int GetVersion() const override { return 1; }
ReturnType Create(const Value& args) override { return std::make_unique<ResizeOCRImpl>(args); }
};
REGISTER_MODULE(ResizeOCRImpl, ResizeOCRImplCreator);
class ResizeOCR : public Transform {
public:
explicit ResizeOCR(const Value& args) : Transform(args) {
impl_ = Instantiate<ResizeOCRImpl>("ResizeOCR", args);
}
~ResizeOCR() override = default;
Result<Value> Process(const Value& input) override { return impl_->Process(input); }
private:
std::unique_ptr<ResizeOCRImpl> impl_;
static const std::string name_;
};
DECLARE_AND_REGISTER_MODULE(Transform, ResizeOCR, 1);
} // namespace mmdeploy