mmdeploy/tests/test_codebase/test_mmrotate/test_mmrotate_models.py

686 lines
23 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os
import random
from typing import Dict, List
import mmcv
import numpy as np
import pytest
import torch
from mmdeploy.codebase import import_codebase
from mmdeploy.utils import Backend, Codebase
from mmdeploy.utils.config_utils import get_ir_config
from mmdeploy.utils.test import (WrapModel, check_backend, get_model_outputs,
get_rewrite_outputs)
try:
import_codebase(Codebase.MMROTATE)
except ImportError:
pytest.skip(
f'{Codebase.MMROTATE} is not installed.', allow_module_level=True)
def seed_everything(seed=1029):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = False
def convert_to_list(rewrite_output: Dict, output_names: List[str]) -> List:
"""Converts output from a dictionary to a list.
The new list will contain only those output values, whose names are in list
'output_names'.
"""
outputs = [
value for name, value in rewrite_output.items() if name in output_names
]
return outputs
def get_anchor_head_model():
"""AnchorHead Config."""
test_cfg = mmcv.Config(
dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(iou_thr=0.1),
max_per_img=2000))
from mmrotate.models.dense_heads import RotatedAnchorHead
model = RotatedAnchorHead(num_classes=4, in_channels=1, test_cfg=test_cfg)
model.requires_grad_(False)
return model
def _replace_r50_with_r18(model):
"""Replace ResNet50 with ResNet18 in config."""
model = copy.deepcopy(model)
if model.backbone.type == 'ResNet':
model.backbone.depth = 18
model.backbone.base_channels = 2
model.neck.in_channels = [2, 4, 8, 16]
return model
@pytest.mark.parametrize('backend', [Backend.ONNXRUNTIME])
@pytest.mark.parametrize(
'model_cfg_path',
['tests/test_codebase/test_mmrotate/data/single_stage_model.json'])
def test_forward_of_base_detector(model_cfg_path, backend):
check_backend(backend)
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type=backend.value),
onnx_config=dict(
output_names=['dets', 'labels'], input_shape=None),
codebase_config=dict(
type='mmrotate',
task='RotatedDetection',
post_processing=dict(
score_threshold=0.05,
iou_threshold=0.5,
pre_top_k=-1,
keep_top_k=100,
))))
model_cfg = mmcv.Config(dict(model=mmcv.load(model_cfg_path)))
model_cfg.model = _replace_r50_with_r18(model_cfg.model)
from mmrotate.models import build_detector
model_cfg.model.pretrained = None
model_cfg.model.train_cfg = None
model = build_detector(model_cfg.model, test_cfg=model_cfg.get('test_cfg'))
model.cfg = model_cfg
model.to('cpu')
img = torch.randn(1, 3, 64, 64)
rewrite_inputs = {'img': img}
rewrite_outputs, _ = get_rewrite_outputs(
wrapped_model=model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
assert rewrite_outputs is not None
def get_deploy_cfg(backend_type: Backend, ir_type: str):
return mmcv.Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(
type=ir_type,
output_names=['dets', 'labels'],
input_shape=None),
codebase_config=dict(
type='mmrotate',
task='RotatedDetection',
post_processing=dict(
score_threshold=0.05,
iou_threshold=0.1,
pre_top_k=2000,
keep_top_k=2000,
))))
@pytest.mark.parametrize('backend_type, ir_type',
[(Backend.ONNXRUNTIME, 'onnx')])
def test_base_dense_head_get_bboxes(backend_type: Backend, ir_type: str):
"""Test get_bboxes rewrite of base dense head."""
check_backend(backend_type)
anchor_head = get_anchor_head_model()
anchor_head.cpu().eval()
s = 128
img_metas = [{
'scale_factor': np.ones(4),
'pad_shape': (s, s, 3),
'img_shape': (s, s, 3)
}]
deploy_cfg = get_deploy_cfg(backend_type, ir_type)
output_names = get_ir_config(deploy_cfg).get('output_names', None)
# the cls_score's size: (1, 36, 32, 32), (1, 36, 16, 16),
# (1, 36, 8, 8), (1, 36, 4, 4), (1, 36, 2, 2).
# the bboxes's size: (1, 45, 32, 32), (1, 45, 16, 16),
# (1, 45, 8, 8), (1, 45, 4, 4), (1, 45, 2, 2)
seed_everything(1234)
cls_score = [
torch.rand(1, 36, pow(2, i), pow(2, i)) for i in range(5, 0, -1)
]
seed_everything(5678)
bboxes = [torch.rand(1, 45, pow(2, i), pow(2, i)) for i in range(5, 0, -1)]
# to get outputs of pytorch model
model_inputs = {
'cls_scores': cls_score,
'bbox_preds': bboxes,
'img_metas': img_metas
}
model_outputs = get_model_outputs(anchor_head, 'get_bboxes', model_inputs)
# to get outputs of onnx model after rewrite
img_metas[0]['img_shape'] = torch.Tensor([s, s])
wrapped_model = WrapModel(
anchor_head, 'get_bboxes', img_metas=img_metas, with_nms=True)
rewrite_inputs = {
'cls_scores': cls_score,
'bbox_preds': bboxes,
}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
if is_backend_output:
if isinstance(rewrite_outputs, dict):
rewrite_outputs = convert_to_list(rewrite_outputs, output_names)
for model_output, rewrite_output in zip(model_outputs[0],
rewrite_outputs):
model_output = model_output.squeeze().cpu().numpy()
rewrite_output = rewrite_output.squeeze()
# hard code to make two tensors with the same shape
# rewrite and original codes applied different nms strategy
assert np.allclose(
model_output[:rewrite_output.shape[0]][:2],
rewrite_output[:2],
rtol=1e-03,
atol=1e-05)
else:
assert rewrite_outputs is not None
def get_single_roi_extractor():
"""SingleRoIExtractor Config."""
from mmrotate.models.roi_heads import RotatedSingleRoIExtractor
roi_layer = dict(
type='RoIAlignRotated', out_size=7, sample_num=2, clockwise=True)
out_channels = 1
featmap_strides = [4, 8, 16, 32]
model = RotatedSingleRoIExtractor(roi_layer, out_channels,
featmap_strides).eval()
return model
@pytest.mark.parametrize('backend_type', [Backend.ONNXRUNTIME])
def test_rotated_single_roi_extractor(backend_type: Backend):
check_backend(backend_type)
single_roi_extractor = get_single_roi_extractor()
output_names = ['roi_feat']
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(output_names=output_names, input_shape=None),
codebase_config=dict(
type='mmrotate',
task='RotatedDetection',
)))
seed_everything(1234)
out_channels = single_roi_extractor.out_channels
feats = [
torch.rand((1, out_channels, 200, 336)),
torch.rand((1, out_channels, 100, 168)),
torch.rand((1, out_channels, 50, 84)),
torch.rand((1, out_channels, 25, 42)),
]
seed_everything(5678)
rois = torch.tensor(
[[0.0000, 587.8285, 52.1405, 886.2484, 341.5644, 0.0000]])
model_inputs = {
'feats': feats,
'rois': rois,
}
model_outputs = get_model_outputs(single_roi_extractor, 'forward',
model_inputs)
backend_outputs, _ = get_rewrite_outputs(
wrapped_model=single_roi_extractor,
model_inputs=model_inputs,
deploy_cfg=deploy_cfg)
if isinstance(backend_outputs, dict):
backend_outputs = backend_outputs.values()
for model_output, backend_output in zip(model_outputs[0], backend_outputs):
model_output = model_output.squeeze().cpu().numpy()
backend_output = backend_output.squeeze()
assert np.allclose(
model_output, backend_output, rtol=1e-03, atol=1e-05)
def get_oriented_rpn_head_model():
"""Oriented RPN Head Config."""
test_cfg = mmcv.Config(
dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(iou_thr=0.1),
max_per_img=2000))
from mmrotate.models.dense_heads import OrientedRPNHead
model = OrientedRPNHead(
in_channels=1,
version='le90',
bbox_coder=dict(type='MidpointOffsetCoder', angle_range='le90'),
test_cfg=test_cfg)
model.requires_grad_(False)
return model
@pytest.mark.parametrize('backend_type', [Backend.ONNXRUNTIME])
def test_get_bboxes_of_oriented_rpn_head(backend_type: Backend):
check_backend(backend_type)
head = get_oriented_rpn_head_model()
head.cpu().eval()
s = 128
img_metas = [{
'scale_factor': np.ones(4),
'pad_shape': (s, s, 3),
'img_shape': (s, s, 3)
}]
output_names = ['dets', 'labels']
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(output_names=output_names, input_shape=None),
codebase_config=dict(
type='mmrotate',
task='RotatedDetection',
post_processing=dict(
score_threshold=0.05,
iou_threshold=0.1,
pre_top_k=2000,
keep_top_k=2000))))
# the cls_score's size: (1, 36, 32, 32), (1, 36, 16, 16),
# (1, 36, 8, 8), (1, 36, 4, 4), (1, 36, 2, 2).
# the bboxes's size: (1, 54, 32, 32), (1, 54, 16, 16),
# (1, 54, 8, 8), (1, 54, 4, 4), (1, 54, 2, 2)
seed_everything(1234)
cls_score = [
torch.rand(1, 9, pow(2, i), pow(2, i)) for i in range(5, 0, -1)
]
seed_everything(5678)
bboxes = [torch.rand(1, 54, pow(2, i), pow(2, i)) for i in range(5, 0, -1)]
# to get outputs of onnx model after rewrite
img_metas[0]['img_shape'] = torch.Tensor([s, s])
wrapped_model = WrapModel(
head, 'get_bboxes', img_metas=img_metas, with_nms=True)
rewrite_inputs = {
'cls_scores': cls_score,
'bbox_preds': bboxes,
}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
assert rewrite_outputs is not None
def get_rotated_rpn_head_model():
"""Oriented RPN Head Config."""
test_cfg = mmcv.Config(
dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(iou_thr=0.1),
max_per_img=2000))
from mmrotate.models.dense_heads import RotatedRPNHead
model = RotatedRPNHead(
version='le90',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
test_cfg=test_cfg)
model.requires_grad_(False)
return model
@pytest.mark.parametrize('backend_type', [Backend.ONNXRUNTIME])
def test_get_bboxes_of_rotated_rpn_head(backend_type: Backend):
check_backend(backend_type)
head = get_rotated_rpn_head_model()
head.cpu().eval()
s = 128
img_metas = [{
'scale_factor': np.ones(4),
'pad_shape': (s, s, 3),
'img_shape': (s, s, 3)
}]
output_names = ['dets', 'labels']
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(output_names=output_names, input_shape=None),
codebase_config=dict(
type='mmrotate',
task='RotatedDetection',
post_processing=dict(
score_threshold=0.05,
iou_threshold=0.1,
pre_top_k=2000,
keep_top_k=2000))))
# the cls_score's size: (1, 3, 32, 32), (1, 3, 16, 16),
# (1, 3, 8, 8), (1, 3, 4, 4), (1, 3, 2, 2).
# the bboxes's size: (1, 18, 32, 32), (1, 18, 16, 16),
# (1, 18, 8, 8), (1, 18, 4, 4), (1, 18, 2, 2)
seed_everything(1234)
cls_score = [
torch.rand(1, 3, pow(2, i), pow(2, i)) for i in range(5, 0, -1)
]
seed_everything(5678)
bboxes = [torch.rand(1, 18, pow(2, i), pow(2, i)) for i in range(5, 0, -1)]
# to get outputs of onnx model after rewrite
img_metas[0]['img_shape'] = torch.Tensor([s, s])
wrapped_model = WrapModel(
head, 'get_bboxes', img_metas=img_metas, with_nms=True)
rewrite_inputs = {
'cls_scores': cls_score,
'bbox_preds': bboxes,
}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
assert rewrite_outputs is not None
@pytest.mark.parametrize('backend_type', [Backend.ONNXRUNTIME])
def test_rotate_standard_roi_head__simple_test(backend_type: Backend):
check_backend(backend_type)
from mmrotate.models.roi_heads import OrientedStandardRoIHead
output_names = ['dets', 'labels']
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(output_names=output_names, input_shape=None),
codebase_config=dict(
type='mmrotate',
task='RotatedDetection',
post_processing=dict(
score_threshold=0.05,
iou_threshold=0.1,
pre_top_k=2000,
keep_top_k=2000))))
angle_version = 'le90'
test_cfg = mmcv.Config(
dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(iou_thr=0.1),
max_per_img=2000))
head = OrientedStandardRoIHead(
bbox_roi_extractor=dict(
type='RotatedSingleRoIExtractor',
roi_layer=dict(
type='RoIAlignRotated',
out_size=7,
sample_num=2,
clockwise=True),
out_channels=3,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='RotatedShared2FCBBoxHead',
in_channels=3,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=15,
bbox_coder=dict(
type='DeltaXYWHAOBBoxCoder',
angle_range=angle_version,
norm_factor=None,
edge_swap=True,
proj_xy=True,
target_means=(.0, .0, .0, .0, .0),
target_stds=(0.1, 0.1, 0.2, 0.2, 0.1)),
reg_class_agnostic=True),
test_cfg=test_cfg)
head.cpu().eval()
seed_everything(1234)
x = [torch.rand(1, 3, pow(2, i), pow(2, i)) for i in range(4, 0, -1)]
proposals = [torch.rand(1, 100, 6), torch.randint(0, 10, (1, 100))]
img_metas = [{'img_shape': torch.tensor([224, 224])}]
wrapped_model = WrapModel(
head, 'simple_test', proposals=proposals, img_metas=img_metas)
rewrite_inputs = {'x': x}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
assert rewrite_outputs is not None
@pytest.mark.parametrize('backend_type', [Backend.ONNXRUNTIME])
def test_gv_ratio_roi_head__simple_test(backend_type: Backend):
check_backend(backend_type)
from mmrotate.models.roi_heads import GVRatioRoIHead
output_names = ['dets', 'labels']
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(output_names=output_names, input_shape=None),
codebase_config=dict(
type='mmrotate',
task='RotatedDetection',
post_processing=dict(
score_threshold=0.05,
iou_threshold=0.1,
pre_top_k=2000,
keep_top_k=2000,
max_output_boxes_per_class=1000))))
angle_version = 'le90'
test_cfg = mmcv.Config(
dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(iou_thr=0.1),
max_per_img=2000))
head = GVRatioRoIHead(
version=angle_version,
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=3,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='GVBBoxHead',
version=angle_version,
num_shared_fcs=2,
in_channels=3,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=15,
ratio_thr=0.8,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=(.0, .0, .0, .0),
target_stds=(0.1, 0.1, 0.2, 0.2)),
fix_coder=dict(type='GVFixCoder', angle_range=angle_version),
ratio_coder=dict(type='GVRatioCoder', angle_range=angle_version),
reg_class_agnostic=True),
test_cfg=test_cfg)
head.cpu().eval()
seed_everything(1234)
x = [torch.rand(1, 3, pow(2, i), pow(2, i)) for i in range(4, 0, -1)]
bboxes = torch.rand(1, 100, 2)
bboxes = torch.cat(
[bboxes, bboxes + torch.rand(1, 100, 2) + torch.rand(1, 100, 1)],
dim=-1)
proposals = [bboxes, torch.randint(0, 10, (1, 100))]
img_metas = [{'img_shape': torch.tensor([224, 224])}]
wrapped_model = WrapModel(
head, 'simple_test', proposals=proposals, img_metas=img_metas)
rewrite_inputs = {'x': x}
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=rewrite_inputs,
deploy_cfg=deploy_cfg)
assert rewrite_outputs is not None
def get_roi_trans_roi_head_model():
"""Oriented RPN Head Config."""
angle_version = 'le90'
num_stages = 2
stage_loss_weights = [1, 1]
version = angle_version
bbox_roi_extractor = [
dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=64,
featmap_strides=[4, 8, 16, 32]),
dict(
type='RotatedSingleRoIExtractor',
roi_layer=dict(
type='RoIAlignRotated',
out_size=7,
sample_num=2,
clockwise=True),
out_channels=64,
featmap_strides=[4, 8, 16, 32]),
]
bbox_head = [
dict(
type='RotatedShared2FCBBoxHead',
in_channels=64,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=15,
bbox_coder=dict(
type='DeltaXYWHAHBBoxCoder',
angle_range=angle_version,
norm_factor=2,
edge_swap=True,
target_means=[0., 0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2, 1]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
dict(
type='RotatedShared2FCBBoxHead',
in_channels=64,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=15,
bbox_coder=dict(
type='DeltaXYWHAOBBoxCoder',
angle_range=angle_version,
norm_factor=None,
edge_swap=True,
proj_xy=True,
target_means=[0., 0., 0., 0., 0.],
target_stds=[0.05, 0.05, 0.1, 0.1, 0.5]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
]
test_cfg = mmcv.Config(
dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(iou_thr=0.1),
max_per_img=2000))
args = [num_stages, stage_loss_weights, bbox_roi_extractor, bbox_head]
kwargs = {'version': version, 'test_cfg': test_cfg}
from mmrotate.models.roi_heads import RoITransRoIHead
model = RoITransRoIHead(*args, **kwargs).eval()
return model
@pytest.mark.parametrize('backend_type', [Backend.ONNXRUNTIME])
def test_simple_test_of_roi_trans_roi_head(backend_type: Backend):
check_backend(backend_type)
roi_head = get_roi_trans_roi_head_model()
roi_head.cpu()
seed_everything(1234)
x = [
torch.rand((1, 64, 32, 32)),
torch.rand((1, 64, 16, 16)),
torch.rand((1, 64, 8, 8)),
torch.rand((1, 64, 4, 4)),
]
proposals = torch.tensor([[[58.8285, 52.1405, 188.2484, 141.5644, 0.5]]])
labels = torch.tensor([[[0.]]])
s = 256
img_metas = [{
'img_shape': torch.tensor([s, s]),
'ori_shape': torch.tensor([s, s]),
'scale_factor': torch.tensor([1, 1, 1, 1])
}]
model_inputs = {
'x': x,
}
output_names = ['det_bboxes', 'det_labels']
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type=backend_type.value),
onnx_config=dict(output_names=output_names, input_shape=None),
codebase_config=dict(
type='mmrotate',
task='RotatedDetection',
post_processing=dict(
score_threshold=0.05,
iou_threshold=0.1,
pre_top_k=2000,
keep_top_k=2000))))
wrapped_model = WrapModel(
roi_head,
'simple_test',
proposal_list=[proposals, labels],
img_metas=img_metas)
rewrite_outputs, is_backend_output = get_rewrite_outputs(
wrapped_model=wrapped_model,
model_inputs=model_inputs,
deploy_cfg=deploy_cfg)
assert rewrite_outputs is not None