179 lines
5.7 KiB
Python
179 lines
5.7 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os
|
|
import os.path as osp
|
|
import tempfile
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
from mmengine import Config
|
|
|
|
from mmdeploy.utils import Backend
|
|
from mmdeploy.utils.test import backend_checker, get_random_name
|
|
|
|
|
|
@pytest.mark.skip(reason='This a not test class but a utility class.')
|
|
class TestModel(nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
return x * 0.5
|
|
|
|
|
|
def generate_onnx_file(model, export_img, onnx_file, input_name, output_name):
|
|
with torch.no_grad():
|
|
dynamic_axes = {
|
|
input_name: {
|
|
0: 'batch',
|
|
2: 'width',
|
|
3: 'height'
|
|
},
|
|
output_name: {
|
|
0: 'batch'
|
|
}
|
|
}
|
|
torch.onnx.export(
|
|
model,
|
|
export_img,
|
|
onnx_file,
|
|
output_names=[output_name],
|
|
input_names=[input_name],
|
|
keep_initializers_as_inputs=True,
|
|
do_constant_folding=True,
|
|
verbose=False,
|
|
opset_version=11,
|
|
dynamic_axes=dynamic_axes)
|
|
assert osp.exists(onnx_file)
|
|
|
|
|
|
def get_outputs(pytorch_model, openvino_model_path, input, input_name,
|
|
output_name):
|
|
output_pytorch = pytorch_model(input).numpy()
|
|
|
|
from mmdeploy.backend.openvino import OpenVINOWrapper
|
|
openvino_model = OpenVINOWrapper(openvino_model_path)
|
|
openvino_output = openvino_model({input_name: input})[output_name]
|
|
|
|
return output_pytorch, openvino_output
|
|
|
|
|
|
def get_base_deploy_cfg():
|
|
deploy_cfg = Config(dict(backend_config=dict(type='openvino')))
|
|
return deploy_cfg
|
|
|
|
|
|
def get_deploy_cfg_with_mo_args():
|
|
deploy_cfg = Config(
|
|
dict(
|
|
backend_config=dict(
|
|
type='openvino',
|
|
mo_options=dict(
|
|
args={'--data_type': 'FP32'}, flags=['--disable_fusing'
|
|
]))))
|
|
return deploy_cfg
|
|
|
|
|
|
@pytest.mark.parametrize('get_deploy_cfg',
|
|
[get_base_deploy_cfg, get_deploy_cfg_with_mo_args])
|
|
@backend_checker(Backend.OPENVINO)
|
|
def test_onnx2openvino(get_deploy_cfg):
|
|
from mmdeploy.apis.openvino import (from_onnx, get_mo_options_from_cfg,
|
|
get_output_model_file)
|
|
pytorch_model = TestModel().eval()
|
|
export_img = torch.rand([1, 3, 8, 8])
|
|
onnx_file = tempfile.NamedTemporaryFile(suffix='.onnx').name
|
|
input_name = get_random_name()
|
|
output_name = get_random_name()
|
|
generate_onnx_file(pytorch_model, export_img, onnx_file, input_name,
|
|
output_name)
|
|
|
|
input_info = {input_name: export_img.shape}
|
|
output_names = [output_name]
|
|
openvino_dir = tempfile.TemporaryDirectory().name
|
|
deploy_cfg = get_deploy_cfg()
|
|
mo_options = get_mo_options_from_cfg(deploy_cfg)
|
|
from_onnx(onnx_file, openvino_dir, input_info, output_names, mo_options)
|
|
openvino_model_path = get_output_model_file(onnx_file, openvino_dir)
|
|
assert osp.exists(openvino_model_path), \
|
|
'The file (.xml) for OpenVINO IR has not been created.'
|
|
|
|
test_img = torch.rand([1, 3, 16, 16])
|
|
output_pytorch, openvino_output = get_outputs(pytorch_model,
|
|
openvino_model_path,
|
|
test_img, input_name,
|
|
output_name)
|
|
assert np.allclose(output_pytorch, openvino_output), \
|
|
'OpenVINO and PyTorch outputs are not the same.'
|
|
|
|
|
|
@backend_checker(Backend.OPENVINO)
|
|
def test_can_not_run_onnx2openvino_without_mo():
|
|
current_environ = dict(os.environ)
|
|
os.environ.clear()
|
|
|
|
is_error = False
|
|
try:
|
|
from mmdeploy.apis.openvino import from_onnx
|
|
from_onnx('tmp.onnx', '/tmp', {}, ['output'])
|
|
except RuntimeError:
|
|
is_error = True
|
|
|
|
os.environ.update(current_environ)
|
|
assert is_error, \
|
|
'The onnx2openvino script was launched without checking for MO.'
|
|
|
|
|
|
@backend_checker(Backend.OPENVINO)
|
|
def test_get_input_info_from_cfg():
|
|
from mmdeploy.apis.openvino import get_input_info_from_cfg
|
|
|
|
# Test 1
|
|
deploy_cfg = Config()
|
|
with pytest.raises(KeyError):
|
|
get_input_info_from_cfg(deploy_cfg)
|
|
|
|
# Test 2
|
|
input_name = 'input'
|
|
height, width = 600, 1000
|
|
shape = [1, 3, height, width]
|
|
expected_input_info = {input_name: shape}
|
|
deploy_cfg = Config({
|
|
'backend_config': {
|
|
'model_inputs': [{
|
|
'opt_shapes': expected_input_info
|
|
}]
|
|
}
|
|
})
|
|
input_info = get_input_info_from_cfg(deploy_cfg)
|
|
assert input_info == expected_input_info, 'Test 2: ' \
|
|
'The expected value of \'input_info\' does not match the received one.'
|
|
|
|
# Test 3
|
|
# The case where the input name in 'onnx_config'
|
|
# is different from 'backend_config'.
|
|
onnx_config_input_name = get_random_name(1234)
|
|
deploy_cfg.merge_from_dict(
|
|
{'onnx_config': {
|
|
'input_names': [onnx_config_input_name]
|
|
}})
|
|
expected_input_info = {onnx_config_input_name: shape}
|
|
input_info = get_input_info_from_cfg(deploy_cfg)
|
|
assert input_info == expected_input_info, 'Test 3: ' \
|
|
'The expected value of \'input_info\' does not match the received one.'
|
|
|
|
# Test 4
|
|
# The case where 'backend_config.model_inputs.opt_shapes'
|
|
# is given by a list, not a dictionary.
|
|
deploy_cfg.merge_from_dict(
|
|
{'backend_config': {
|
|
'model_inputs': [{
|
|
'opt_shapes': [shape]
|
|
}]
|
|
}})
|
|
input_info = get_input_info_from_cfg(deploy_cfg)
|
|
assert input_info == expected_input_info, 'Test 4: ' \
|
|
'The expected value of \'input_info\' does not match the received one.'
|