mmdeploy/tests/test_apis/test_onnx2openvino.py

179 lines
5.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
import tempfile
import numpy as np
import pytest
import torch
import torch.nn as nn
from mmengine import Config
from mmdeploy.utils import Backend
from mmdeploy.utils.test import backend_checker, get_random_name
@pytest.mark.skip(reason='This a not test class but a utility class.')
class TestModel(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x * 0.5
def generate_onnx_file(model, export_img, onnx_file, input_name, output_name):
with torch.no_grad():
dynamic_axes = {
input_name: {
0: 'batch',
2: 'width',
3: 'height'
},
output_name: {
0: 'batch'
}
}
torch.onnx.export(
model,
export_img,
onnx_file,
output_names=[output_name],
input_names=[input_name],
keep_initializers_as_inputs=True,
do_constant_folding=True,
verbose=False,
opset_version=11,
dynamic_axes=dynamic_axes)
assert osp.exists(onnx_file)
def get_outputs(pytorch_model, openvino_model_path, input, input_name,
output_name):
output_pytorch = pytorch_model(input).numpy()
from mmdeploy.backend.openvino import OpenVINOWrapper
openvino_model = OpenVINOWrapper(openvino_model_path)
openvino_output = openvino_model({input_name: input})[output_name]
return output_pytorch, openvino_output
def get_base_deploy_cfg():
deploy_cfg = Config(dict(backend_config=dict(type='openvino')))
return deploy_cfg
def get_deploy_cfg_with_mo_args():
deploy_cfg = Config(
dict(
backend_config=dict(
type='openvino',
mo_options=dict(
args={'--data_type': 'FP32'}, flags=['--disable_fusing'
]))))
return deploy_cfg
@pytest.mark.parametrize('get_deploy_cfg',
[get_base_deploy_cfg, get_deploy_cfg_with_mo_args])
@backend_checker(Backend.OPENVINO)
def test_onnx2openvino(get_deploy_cfg):
from mmdeploy.apis.openvino import (from_onnx, get_mo_options_from_cfg,
get_output_model_file)
pytorch_model = TestModel().eval()
export_img = torch.rand([1, 3, 8, 8])
onnx_file = tempfile.NamedTemporaryFile(suffix='.onnx').name
input_name = get_random_name()
output_name = get_random_name()
generate_onnx_file(pytorch_model, export_img, onnx_file, input_name,
output_name)
input_info = {input_name: export_img.shape}
output_names = [output_name]
openvino_dir = tempfile.TemporaryDirectory().name
deploy_cfg = get_deploy_cfg()
mo_options = get_mo_options_from_cfg(deploy_cfg)
from_onnx(onnx_file, openvino_dir, input_info, output_names, mo_options)
openvino_model_path = get_output_model_file(onnx_file, openvino_dir)
assert osp.exists(openvino_model_path), \
'The file (.xml) for OpenVINO IR has not been created.'
test_img = torch.rand([1, 3, 16, 16])
output_pytorch, openvino_output = get_outputs(pytorch_model,
openvino_model_path,
test_img, input_name,
output_name)
assert np.allclose(output_pytorch, openvino_output), \
'OpenVINO and PyTorch outputs are not the same.'
@backend_checker(Backend.OPENVINO)
def test_can_not_run_onnx2openvino_without_mo():
current_environ = dict(os.environ)
os.environ.clear()
is_error = False
try:
from mmdeploy.apis.openvino import from_onnx
from_onnx('tmp.onnx', '/tmp', {}, ['output'])
except RuntimeError:
is_error = True
os.environ.update(current_environ)
assert is_error, \
'The onnx2openvino script was launched without checking for MO.'
@backend_checker(Backend.OPENVINO)
def test_get_input_info_from_cfg():
from mmdeploy.apis.openvino import get_input_info_from_cfg
# Test 1
deploy_cfg = Config()
with pytest.raises(KeyError):
get_input_info_from_cfg(deploy_cfg)
# Test 2
input_name = 'input'
height, width = 600, 1000
shape = [1, 3, height, width]
expected_input_info = {input_name: shape}
deploy_cfg = Config({
'backend_config': {
'model_inputs': [{
'opt_shapes': expected_input_info
}]
}
})
input_info = get_input_info_from_cfg(deploy_cfg)
assert input_info == expected_input_info, 'Test 2: ' \
'The expected value of \'input_info\' does not match the received one.'
# Test 3
# The case where the input name in 'onnx_config'
# is different from 'backend_config'.
onnx_config_input_name = get_random_name(1234)
deploy_cfg.merge_from_dict(
{'onnx_config': {
'input_names': [onnx_config_input_name]
}})
expected_input_info = {onnx_config_input_name: shape}
input_info = get_input_info_from_cfg(deploy_cfg)
assert input_info == expected_input_info, 'Test 3: ' \
'The expected value of \'input_info\' does not match the received one.'
# Test 4
# The case where 'backend_config.model_inputs.opt_shapes'
# is given by a list, not a dictionary.
deploy_cfg.merge_from_dict(
{'backend_config': {
'model_inputs': [{
'opt_shapes': [shape]
}]
}})
input_info = get_input_info_from_cfg(deploy_cfg)
assert input_info == expected_input_info, 'Test 4: ' \
'The expected value of \'input_info\' does not match the received one.'