mmdeploy/tests/test_apis/test_onnx2tensorrt.py

90 lines
2.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
import mmcv
import pytest
import torch
import torch.nn as nn
from mmdeploy.utils import Backend
from mmdeploy.utils.test import backend_checker
onnx_file = tempfile.NamedTemporaryFile(suffix='.onnx').name
engine_file = tempfile.NamedTemporaryFile(suffix='.engine').name
test_img = torch.rand([1, 3, 8, 8])
@pytest.mark.skip(reason='This a not test class but a utility class.')
class TestModel(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x * 0.5
test_model = TestModel().eval().cuda()
def get_deploy_cfg():
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(
type='tensorrt',
common_config=dict(
fp16_mode=False, max_workspace_size=1 << 30),
model_inputs=[
dict(
input_shapes=dict(
input=dict(
min_shape=[1, 3, 8, 8],
opt_shape=[1, 3, 8, 8],
max_shape=[1, 3, 8, 8])))
])))
return deploy_cfg
def generate_onnx_file(model):
with torch.no_grad():
dynamic_axes = {
'input': {
0: 'batch',
2: 'width',
3: 'height'
},
'output': {
0: 'batch'
}
}
torch.onnx.export(
model,
test_img,
onnx_file,
output_names=['output'],
input_names=['input'],
keep_initializers_as_inputs=True,
do_constant_folding=True,
verbose=False,
opset_version=11,
dynamic_axes=dynamic_axes)
assert osp.exists(onnx_file)
@backend_checker(Backend.TENSORRT)
def test_onnx2tensorrt():
from mmdeploy.apis.tensorrt import onnx2tensorrt
from mmdeploy.backend.tensorrt import load
model = test_model
generate_onnx_file(model)
deploy_cfg = get_deploy_cfg()
work_dir, save_file = osp.split(engine_file)
onnx2tensorrt(work_dir, save_file, 0, deploy_cfg, onnx_file)
assert osp.exists(work_dir)
assert osp.exists(engine_file)
engine = load(engine_file)
assert engine is not None