90 lines
2.3 KiB
Python
90 lines
2.3 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os.path as osp
|
|
import tempfile
|
|
|
|
import mmcv
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from mmdeploy.utils import Backend
|
|
from mmdeploy.utils.test import backend_checker
|
|
|
|
onnx_file = tempfile.NamedTemporaryFile(suffix='.onnx').name
|
|
engine_file = tempfile.NamedTemporaryFile(suffix='.engine').name
|
|
test_img = torch.rand([1, 3, 8, 8])
|
|
|
|
|
|
@pytest.mark.skip(reason='This a not test class but a utility class.')
|
|
class TestModel(nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
return x * 0.5
|
|
|
|
|
|
test_model = TestModel().eval().cuda()
|
|
|
|
|
|
def get_deploy_cfg():
|
|
deploy_cfg = mmcv.Config(
|
|
dict(
|
|
backend_config=dict(
|
|
type='tensorrt',
|
|
common_config=dict(
|
|
fp16_mode=False, max_workspace_size=1 << 30),
|
|
model_inputs=[
|
|
dict(
|
|
input_shapes=dict(
|
|
input=dict(
|
|
min_shape=[1, 3, 8, 8],
|
|
opt_shape=[1, 3, 8, 8],
|
|
max_shape=[1, 3, 8, 8])))
|
|
])))
|
|
return deploy_cfg
|
|
|
|
|
|
def generate_onnx_file(model):
|
|
with torch.no_grad():
|
|
dynamic_axes = {
|
|
'input': {
|
|
0: 'batch',
|
|
2: 'width',
|
|
3: 'height'
|
|
},
|
|
'output': {
|
|
0: 'batch'
|
|
}
|
|
}
|
|
torch.onnx.export(
|
|
model,
|
|
test_img,
|
|
onnx_file,
|
|
output_names=['output'],
|
|
input_names=['input'],
|
|
keep_initializers_as_inputs=True,
|
|
do_constant_folding=True,
|
|
verbose=False,
|
|
opset_version=11,
|
|
dynamic_axes=dynamic_axes)
|
|
assert osp.exists(onnx_file)
|
|
|
|
|
|
@backend_checker(Backend.TENSORRT)
|
|
def test_onnx2tensorrt():
|
|
from mmdeploy.apis.tensorrt import onnx2tensorrt
|
|
from mmdeploy.backend.tensorrt import load
|
|
model = test_model
|
|
generate_onnx_file(model)
|
|
deploy_cfg = get_deploy_cfg()
|
|
|
|
work_dir, save_file = osp.split(engine_file)
|
|
|
|
onnx2tensorrt(work_dir, save_file, 0, deploy_cfg, onnx_file)
|
|
assert osp.exists(work_dir)
|
|
assert osp.exists(engine_file)
|
|
engine = load(engine_file)
|
|
assert engine is not None
|