mmdeploy/tools/deploy.py

58 lines
1.5 KiB
Python

import argparse
import logging
import os.path as osp
import mmcv
import torch.multiprocessing as mp
from torch.multiprocessing import Process, set_start_method
from mmdeploy.apis import torch2onnx
def parse_args():
parser = argparse.ArgumentParser(description='Export model to backend.')
parser.add_argument('deploy_cfg', help='deploy config path')
parser.add_argument('model_cfg', help='model config path')
parser.add_argument('checkpoint', help='model checkpoint path')
parser.add_argument(
'img', help='image used to convert model and test model')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--device', help='device used for training', default='cpu')
args = parser.parse_args()
return args
def main():
args = parse_args()
set_start_method('spawn')
deploy_cfg = args.deploy_cfg
model_cfg = args.model_cfg
checkpoint = args.checkpoint
# create work_dir if not
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
ret_value = mp.Value('d', 0, lock=False)
# convert model
logging.info('start torch2onnx conversion.')
process = Process(
target=torch2onnx,
args=(args.img, args.work_dir, deploy_cfg, model_cfg, checkpoint),
kwargs=dict(device=args.device, ret_value=ret_value))
process.start()
process.join()
if ret_value.value != 0:
logging.error('torch2onnx failed.')
exit()
else:
logging.info('torch2onnx success.')
if __name__ == '__main__':
main()