lvhan028 36124f6205
Merge sdk (#251)
* check in cmake

* move backend_ops to csrc/backend_ops

* check in preprocess, model, some codebase and their c-apis

* check in CMakeLists.txt

* check in parts of test_csrc

* commit everything else

* add readme

* update core's BUILD_INTERFACE directory

* skip codespell on third_party

* update trt_net and ort_net's CMakeLists

* ignore clion's build directory

* check in pybind11

* add onnx.proto. Remove MMDeploy's dependency on ncnn's source code

* export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON

* remove useless message

* target include directory is wrong

* change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net

* skip install directory

* update project's cmake

* remove useless code

* set CMAKE_BUILD_TYPE to Release by force if it isn't set by user

* update custom ops CMakeLists

* pass object target's source lists

* fix lint end-of-file

* fix lint: trailing whitespace

* fix codespell hook

* remove bicubic_interpolate to csrc/backend_ops/

* set MMDEPLOY_BUILD_SDK OFF

* change custom ops build command

* add spdlog installation command

* update docs on how to checkout pybind11

* move bicubic_interpolate to backend_ops/tensorrt directory

* remove useless code

* correct cmake

* fix typo

* fix typo

* fix install directory

* correct sdk's readme

* set cub dir when cuda version < 11.0

* change directory where clang-format will apply to

* fix build command

* add .clang-format

* change clang-format style from google to file

* reformat csrc/backend_ops

* format sdk's code

* turn off clang-format for some files

* add -Xcompiler=-fno-gnu-unique

* fix trt topk initialize

* check in config for sdk demo

* update cmake script and csrc's readme

* correct config's path

* add cuda include directory, otherwise compile failed in case of tensorrt8.2

* clang-format onnx2ncnn.cpp

Co-authored-by: zhangli <lzhang329@gmail.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00

337 lines
14 KiB
C++
Executable File

// Copyright (c) OpenMMLab. All rights reserved.
// right alignment broadcast (c, h, w).
// the same as onnx
#include "expand.h"
#include "../ncnn_ops_definer.h"
namespace mmdeploy {
using namespace ncnn;
DEFINE_LAYER_CREATOR(Expand)
DEFINE_NCNN_OPS(Expand, Expand)
Expand::Expand() {
one_blob_only = false;
support_inplace = false;
}
int Expand::forward(const std::vector<Mat>& bottom_blobs, std::vector<Mat>& top_blobs,
const Option& opt) const {
const Mat& bottom_blob = bottom_blobs[0];
size_t elemsize = bottom_blob.elemsize;
const Mat& old_shape_blob = bottom_blobs[1];
const int shape_width = old_shape_blob.w - 1;
Mat shape_blob(shape_width, elemsize, opt.workspace_allocator);
memcpy(shape_blob.row(0), old_shape_blob.row(0) + 1, shape_width * elemsize);
Mat& top_blob = top_blobs[0];
if (bottom_blob.dims == 1 && shape_blob.w == 1) {
int shape_0 = (int)(shape_blob[0] + 0.5);
if (bottom_blob.w != shape_0 && bottom_blob.w != 1 && shape_0 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (%d) vs (%d)\n", bottom_blob.w, shape_0);
} else if (bottom_blob.w == shape_0 || shape_0 == 1) {
top_blob.create(bottom_blob.w, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int i = 0; i < bottom_blob.w; i++) {
top_blob[i] = bottom_blob[i];
}
} else if (bottom_blob.w == 1) {
top_blob.create(shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int i = 0; i < shape_0; i++) {
top_blob[i] = bottom_blob[0];
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
if (bottom_blob.dims == 1 && shape_blob.w == 2) {
int shape_0 = (int)(shape_blob[0] + 0.5);
int shape_1 = (int)(shape_blob[1] + 0.5);
if (bottom_blob.w != shape_1 && bottom_blob.w != 1 && shape_1 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (1, %d) vs (%d, %d)\n", bottom_blob.w, shape_0,
shape_1);
} else if (bottom_blob.w == shape_1 || shape_1 == 1) {
top_blob.create(bottom_blob.w, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int j = 0; j < shape_0; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.row(j)[i] = bottom_blob[i];
}
}
} else if (bottom_blob.w == 1) {
top_blob.create(shape_1, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int j = 0; j < shape_0; j++) {
for (int i = 0; i < shape_1; i++) {
top_blob.row(j)[i] = bottom_blob[0];
}
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
if (bottom_blob.dims == 1 && shape_blob.w == 3) {
int shape_0 = (int)(shape_blob[0] + 0.5);
int shape_1 = (int)(shape_blob[1] + 0.5);
int shape_2 = (int)(shape_blob[2] + 0.5);
if (bottom_blob.w != shape_2 && bottom_blob.w != 1 && shape_2 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (1, 1, %d) vs (%d, %d, %d)\n", bottom_blob.w,
shape_0, shape_1, shape_2);
} else if (bottom_blob.w == shape_2 || shape_2 == 1) {
top_blob.create(bottom_blob.w, shape_1, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob[i];
}
}
}
} else if (bottom_blob.w == 1) {
top_blob.create(shape_2, shape_1, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < shape_2; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob[0];
}
}
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
if (bottom_blob.dims == 2 && shape_blob.w == 2) {
int shape_0 = (int)(shape_blob[0] + 0.5);
int shape_1 = (int)(shape_blob[1] + 0.5);
if (bottom_blob.w != shape_1 && bottom_blob.w != 1 && shape_1 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d)\n", bottom_blob.h,
bottom_blob.w, shape_0, shape_1);
} else if (bottom_blob.h != shape_0 && bottom_blob.h != 1 && shape_0 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d)\n", bottom_blob.h,
bottom_blob.w, shape_0, shape_1);
} else if ((bottom_blob.w == shape_1 || shape_1 == 1) &&
(bottom_blob.h == shape_0 || shape_0 == 1)) {
top_blob.create(bottom_blob.w, bottom_blob.h, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.row(j)[i] = bottom_blob.row(j)[i];
}
}
} else if ((bottom_blob.w == shape_1 || shape_1 == 1) && (bottom_blob.h == 1)) {
top_blob.create(bottom_blob.w, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int j = 0; j < shape_0; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.row(j)[i] = bottom_blob.row(0)[i];
}
}
} else if ((bottom_blob.w == 1) && (bottom_blob.h == shape_0 || shape_0 == 1)) {
top_blob.create(shape_1, bottom_blob.h, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < shape_1; i++) {
top_blob.row(j)[i] = bottom_blob.row(j)[0];
}
}
} else if (bottom_blob.h == 1 && bottom_blob.w == 1) {
top_blob.create(shape_1, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int j = 0; j < shape_0; j++) {
for (int i = 0; i < shape_1; i++) {
top_blob.row(j)[i] = bottom_blob.row(0)[0];
}
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
if (bottom_blob.dims == 2 && shape_blob.w == 3) {
int shape_0 = (int)(shape_blob[0] + 0.5);
int shape_1 = (int)(shape_blob[1] + 0.5);
int shape_2 = (int)(shape_blob[2] + 0.5);
if (bottom_blob.w != shape_2 && bottom_blob.w != 1 && shape_2 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d, %d)\n", bottom_blob.h,
bottom_blob.w, shape_0, shape_1, shape_2);
} else if (bottom_blob.h != shape_1 && bottom_blob.h != 1 && shape_1 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d, %d)\n", bottom_blob.h,
bottom_blob.w, shape_0, shape_1, shape_2);
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) &&
(bottom_blob.h == shape_1 || shape_1 == 1)) {
top_blob.create(bottom_blob.w, bottom_blob.h, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.row(j)[i];
}
}
}
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) && (bottom_blob.h == 1)) {
top_blob.create(bottom_blob.w, shape_1, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.row(0)[i];
}
}
}
} else if ((bottom_blob.w == 1) && (bottom_blob.h == shape_1 || shape_1 == 1)) {
top_blob.create(shape_2, bottom_blob.h, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < shape_2; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.row(j)[0];
}
}
}
} else if (bottom_blob.h == 1 && bottom_blob.w == 1) {
top_blob.create(shape_2, shape_1, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < shape_2; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.row(0)[0];
}
}
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
if (bottom_blob.dims == 3 && shape_blob.w == 3) {
int shape_0 = (int)(shape_blob[0] + 0.5);
int shape_1 = (int)(shape_blob[1] + 0.5);
int shape_2 = (int)(shape_blob[2] + 0.5);
if (bottom_blob.w != shape_2 && bottom_blob.w != 1 && shape_2 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (%d, %d, %d) vs (%d, %d, %d)\n", bottom_blob.c,
bottom_blob.h, bottom_blob.w, shape_0, shape_1, shape_2);
} else if (bottom_blob.h != shape_1 && bottom_blob.h != 1 && shape_1 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (%d, %d, %d) vs (%d, %d, %d)\n", bottom_blob.c,
bottom_blob.h, bottom_blob.w, shape_0, shape_1, shape_2);
} else if (bottom_blob.c != shape_0 && bottom_blob.c != 1 && shape_0 != 1) {
fprintf(stderr, "The broadcast rule is wrong, (%d, %d, %d) vs (%d, %d, %d)\n", bottom_blob.c,
bottom_blob.h, bottom_blob.w, shape_0, shape_1, shape_2);
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) &&
(bottom_blob.h == shape_1 || shape_1 == 1) &&
(bottom_blob.c == shape_0 || shape_0 == 1)) {
top_blob.create(bottom_blob.w, bottom_blob.h, bottom_blob.c, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < bottom_blob.c; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(j)[i];
}
}
}
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) &&
(bottom_blob.h == shape_1 || shape_1 == 1) && (bottom_blob.c == 1)) {
top_blob.create(bottom_blob.w, bottom_blob.h, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(j)[i];
}
}
}
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) && (bottom_blob.h == 1) &&
(bottom_blob.c == shape_0 || shape_0 == 1)) {
top_blob.create(bottom_blob.w, shape_1, bottom_blob.c, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < bottom_blob.c; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(0)[i];
}
}
}
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) && (bottom_blob.h == 1) &&
(bottom_blob.c == 1)) {
top_blob.create(bottom_blob.w, shape_1, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < bottom_blob.w; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(0)[i];
}
}
}
} else if (bottom_blob.w == 1 && (bottom_blob.h == shape_1 || shape_1 == 1) &&
(bottom_blob.c == shape_0 || shape_0 == 1)) {
top_blob.create(shape_2, bottom_blob.h, bottom_blob.c, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < bottom_blob.c; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < shape_2; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(j)[0];
}
}
}
} else if (bottom_blob.w == 1 && (bottom_blob.h == shape_1 || shape_1 == 1) &&
(bottom_blob.c == 1)) {
top_blob.create(shape_2, bottom_blob.h, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < bottom_blob.h; j++) {
for (int i = 0; i < shape_2; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(j)[0];
}
}
}
} else if (bottom_blob.w == 1 && bottom_blob.h == 1 &&
(bottom_blob.c == shape_0 || shape_0 == 1)) {
top_blob.create(shape_2, shape_1, bottom_blob.c, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < bottom_blob.c; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < shape_2; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(0)[0];
}
}
}
} else if (bottom_blob.w == 1 && bottom_blob.h == 1 && bottom_blob.c == 1) {
top_blob.create(shape_2, shape_1, shape_0, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
for (int k = 0; k < shape_0; k++) {
for (int j = 0; j < shape_1; j++) {
for (int i = 0; i < shape_2; i++) {
top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(0)[0];
}
}
}
} else {
fprintf(stderr, "error case\n");
return -100;
}
return 0;
}
fprintf(stderr, "top_blob.shape: (%d %d %d)\n", top_blob.c, top_blob.h, top_blob.w);
}
} // namespace mmdeploy