mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
337 lines
14 KiB
C++
Executable File
337 lines
14 KiB
C++
Executable File
// Copyright (c) OpenMMLab. All rights reserved.
|
|
// right alignment broadcast (c, h, w).
|
|
// the same as onnx
|
|
#include "expand.h"
|
|
|
|
#include "../ncnn_ops_definer.h"
|
|
namespace mmdeploy {
|
|
using namespace ncnn;
|
|
DEFINE_LAYER_CREATOR(Expand)
|
|
DEFINE_NCNN_OPS(Expand, Expand)
|
|
Expand::Expand() {
|
|
one_blob_only = false;
|
|
support_inplace = false;
|
|
}
|
|
|
|
int Expand::forward(const std::vector<Mat>& bottom_blobs, std::vector<Mat>& top_blobs,
|
|
const Option& opt) const {
|
|
const Mat& bottom_blob = bottom_blobs[0];
|
|
size_t elemsize = bottom_blob.elemsize;
|
|
const Mat& old_shape_blob = bottom_blobs[1];
|
|
const int shape_width = old_shape_blob.w - 1;
|
|
Mat shape_blob(shape_width, elemsize, opt.workspace_allocator);
|
|
memcpy(shape_blob.row(0), old_shape_blob.row(0) + 1, shape_width * elemsize);
|
|
Mat& top_blob = top_blobs[0];
|
|
|
|
if (bottom_blob.dims == 1 && shape_blob.w == 1) {
|
|
int shape_0 = (int)(shape_blob[0] + 0.5);
|
|
if (bottom_blob.w != shape_0 && bottom_blob.w != 1 && shape_0 != 1) {
|
|
fprintf(stderr, "The broadcast rule is wrong, (%d) vs (%d)\n", bottom_blob.w, shape_0);
|
|
} else if (bottom_blob.w == shape_0 || shape_0 == 1) {
|
|
top_blob.create(bottom_blob.w, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
|
|
for (int i = 0; i < bottom_blob.w; i++) {
|
|
top_blob[i] = bottom_blob[i];
|
|
}
|
|
} else if (bottom_blob.w == 1) {
|
|
top_blob.create(shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
|
|
for (int i = 0; i < shape_0; i++) {
|
|
top_blob[i] = bottom_blob[0];
|
|
}
|
|
} else {
|
|
fprintf(stderr, "error case\n");
|
|
return -100;
|
|
}
|
|
return 0;
|
|
}
|
|
if (bottom_blob.dims == 1 && shape_blob.w == 2) {
|
|
int shape_0 = (int)(shape_blob[0] + 0.5);
|
|
int shape_1 = (int)(shape_blob[1] + 0.5);
|
|
if (bottom_blob.w != shape_1 && bottom_blob.w != 1 && shape_1 != 1) {
|
|
fprintf(stderr, "The broadcast rule is wrong, (1, %d) vs (%d, %d)\n", bottom_blob.w, shape_0,
|
|
shape_1);
|
|
} else if (bottom_blob.w == shape_1 || shape_1 == 1) {
|
|
top_blob.create(bottom_blob.w, shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
|
|
for (int j = 0; j < shape_0; j++) {
|
|
for (int i = 0; i < bottom_blob.w; i++) {
|
|
top_blob.row(j)[i] = bottom_blob[i];
|
|
}
|
|
}
|
|
|
|
} else if (bottom_blob.w == 1) {
|
|
top_blob.create(shape_1, shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
|
|
for (int j = 0; j < shape_0; j++) {
|
|
for (int i = 0; i < shape_1; i++) {
|
|
top_blob.row(j)[i] = bottom_blob[0];
|
|
}
|
|
}
|
|
|
|
} else {
|
|
fprintf(stderr, "error case\n");
|
|
return -100;
|
|
}
|
|
return 0;
|
|
}
|
|
if (bottom_blob.dims == 1 && shape_blob.w == 3) {
|
|
int shape_0 = (int)(shape_blob[0] + 0.5);
|
|
int shape_1 = (int)(shape_blob[1] + 0.5);
|
|
int shape_2 = (int)(shape_blob[2] + 0.5);
|
|
|
|
if (bottom_blob.w != shape_2 && bottom_blob.w != 1 && shape_2 != 1) {
|
|
fprintf(stderr, "The broadcast rule is wrong, (1, 1, %d) vs (%d, %d, %d)\n", bottom_blob.w,
|
|
shape_0, shape_1, shape_2);
|
|
} else if (bottom_blob.w == shape_2 || shape_2 == 1) {
|
|
top_blob.create(bottom_blob.w, shape_1, shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int k = 0; k < shape_0; k++) {
|
|
for (int j = 0; j < shape_1; j++) {
|
|
for (int i = 0; i < bottom_blob.w; i++) {
|
|
top_blob.channel(k).row(j)[i] = bottom_blob[i];
|
|
}
|
|
}
|
|
}
|
|
} else if (bottom_blob.w == 1) {
|
|
top_blob.create(shape_2, shape_1, shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int k = 0; k < shape_0; k++) {
|
|
for (int j = 0; j < shape_1; j++) {
|
|
for (int i = 0; i < shape_2; i++) {
|
|
top_blob.channel(k).row(j)[i] = bottom_blob[0];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
fprintf(stderr, "error case\n");
|
|
return -100;
|
|
}
|
|
return 0;
|
|
}
|
|
if (bottom_blob.dims == 2 && shape_blob.w == 2) {
|
|
int shape_0 = (int)(shape_blob[0] + 0.5);
|
|
int shape_1 = (int)(shape_blob[1] + 0.5);
|
|
if (bottom_blob.w != shape_1 && bottom_blob.w != 1 && shape_1 != 1) {
|
|
fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d)\n", bottom_blob.h,
|
|
bottom_blob.w, shape_0, shape_1);
|
|
} else if (bottom_blob.h != shape_0 && bottom_blob.h != 1 && shape_0 != 1) {
|
|
fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d)\n", bottom_blob.h,
|
|
bottom_blob.w, shape_0, shape_1);
|
|
} else if ((bottom_blob.w == shape_1 || shape_1 == 1) &&
|
|
(bottom_blob.h == shape_0 || shape_0 == 1)) {
|
|
top_blob.create(bottom_blob.w, bottom_blob.h, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int j = 0; j < bottom_blob.h; j++) {
|
|
for (int i = 0; i < bottom_blob.w; i++) {
|
|
top_blob.row(j)[i] = bottom_blob.row(j)[i];
|
|
}
|
|
}
|
|
} else if ((bottom_blob.w == shape_1 || shape_1 == 1) && (bottom_blob.h == 1)) {
|
|
top_blob.create(bottom_blob.w, shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int j = 0; j < shape_0; j++) {
|
|
for (int i = 0; i < bottom_blob.w; i++) {
|
|
top_blob.row(j)[i] = bottom_blob.row(0)[i];
|
|
}
|
|
}
|
|
} else if ((bottom_blob.w == 1) && (bottom_blob.h == shape_0 || shape_0 == 1)) {
|
|
top_blob.create(shape_1, bottom_blob.h, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int j = 0; j < bottom_blob.h; j++) {
|
|
for (int i = 0; i < shape_1; i++) {
|
|
top_blob.row(j)[i] = bottom_blob.row(j)[0];
|
|
}
|
|
}
|
|
} else if (bottom_blob.h == 1 && bottom_blob.w == 1) {
|
|
top_blob.create(shape_1, shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int j = 0; j < shape_0; j++) {
|
|
for (int i = 0; i < shape_1; i++) {
|
|
top_blob.row(j)[i] = bottom_blob.row(0)[0];
|
|
}
|
|
}
|
|
} else {
|
|
fprintf(stderr, "error case\n");
|
|
return -100;
|
|
}
|
|
return 0;
|
|
}
|
|
if (bottom_blob.dims == 2 && shape_blob.w == 3) {
|
|
int shape_0 = (int)(shape_blob[0] + 0.5);
|
|
int shape_1 = (int)(shape_blob[1] + 0.5);
|
|
int shape_2 = (int)(shape_blob[2] + 0.5);
|
|
if (bottom_blob.w != shape_2 && bottom_blob.w != 1 && shape_2 != 1) {
|
|
fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d, %d)\n", bottom_blob.h,
|
|
bottom_blob.w, shape_0, shape_1, shape_2);
|
|
} else if (bottom_blob.h != shape_1 && bottom_blob.h != 1 && shape_1 != 1) {
|
|
fprintf(stderr, "The broadcast rule is wrong, (%d, %d) vs (%d, %d, %d)\n", bottom_blob.h,
|
|
bottom_blob.w, shape_0, shape_1, shape_2);
|
|
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) &&
|
|
(bottom_blob.h == shape_1 || shape_1 == 1)) {
|
|
top_blob.create(bottom_blob.w, bottom_blob.h, shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int k = 0; k < shape_0; k++) {
|
|
for (int j = 0; j < bottom_blob.h; j++) {
|
|
for (int i = 0; i < bottom_blob.w; i++) {
|
|
top_blob.channel(k).row(j)[i] = bottom_blob.row(j)[i];
|
|
}
|
|
}
|
|
}
|
|
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) && (bottom_blob.h == 1)) {
|
|
top_blob.create(bottom_blob.w, shape_1, shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int k = 0; k < shape_0; k++) {
|
|
for (int j = 0; j < shape_1; j++) {
|
|
for (int i = 0; i < bottom_blob.w; i++) {
|
|
top_blob.channel(k).row(j)[i] = bottom_blob.row(0)[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if ((bottom_blob.w == 1) && (bottom_blob.h == shape_1 || shape_1 == 1)) {
|
|
top_blob.create(shape_2, bottom_blob.h, shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int k = 0; k < shape_0; k++) {
|
|
for (int j = 0; j < bottom_blob.h; j++) {
|
|
for (int i = 0; i < shape_2; i++) {
|
|
top_blob.channel(k).row(j)[i] = bottom_blob.row(j)[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if (bottom_blob.h == 1 && bottom_blob.w == 1) {
|
|
top_blob.create(shape_2, shape_1, shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int k = 0; k < shape_0; k++) {
|
|
for (int j = 0; j < shape_1; j++) {
|
|
for (int i = 0; i < shape_2; i++) {
|
|
top_blob.channel(k).row(j)[i] = bottom_blob.row(0)[0];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
fprintf(stderr, "error case\n");
|
|
return -100;
|
|
}
|
|
return 0;
|
|
}
|
|
if (bottom_blob.dims == 3 && shape_blob.w == 3) {
|
|
int shape_0 = (int)(shape_blob[0] + 0.5);
|
|
int shape_1 = (int)(shape_blob[1] + 0.5);
|
|
int shape_2 = (int)(shape_blob[2] + 0.5);
|
|
if (bottom_blob.w != shape_2 && bottom_blob.w != 1 && shape_2 != 1) {
|
|
fprintf(stderr, "The broadcast rule is wrong, (%d, %d, %d) vs (%d, %d, %d)\n", bottom_blob.c,
|
|
bottom_blob.h, bottom_blob.w, shape_0, shape_1, shape_2);
|
|
} else if (bottom_blob.h != shape_1 && bottom_blob.h != 1 && shape_1 != 1) {
|
|
fprintf(stderr, "The broadcast rule is wrong, (%d, %d, %d) vs (%d, %d, %d)\n", bottom_blob.c,
|
|
bottom_blob.h, bottom_blob.w, shape_0, shape_1, shape_2);
|
|
} else if (bottom_blob.c != shape_0 && bottom_blob.c != 1 && shape_0 != 1) {
|
|
fprintf(stderr, "The broadcast rule is wrong, (%d, %d, %d) vs (%d, %d, %d)\n", bottom_blob.c,
|
|
bottom_blob.h, bottom_blob.w, shape_0, shape_1, shape_2);
|
|
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) &&
|
|
(bottom_blob.h == shape_1 || shape_1 == 1) &&
|
|
(bottom_blob.c == shape_0 || shape_0 == 1)) {
|
|
top_blob.create(bottom_blob.w, bottom_blob.h, bottom_blob.c, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int k = 0; k < bottom_blob.c; k++) {
|
|
for (int j = 0; j < bottom_blob.h; j++) {
|
|
for (int i = 0; i < bottom_blob.w; i++) {
|
|
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(j)[i];
|
|
}
|
|
}
|
|
}
|
|
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) &&
|
|
(bottom_blob.h == shape_1 || shape_1 == 1) && (bottom_blob.c == 1)) {
|
|
top_blob.create(bottom_blob.w, bottom_blob.h, shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int k = 0; k < shape_0; k++) {
|
|
for (int j = 0; j < bottom_blob.h; j++) {
|
|
for (int i = 0; i < bottom_blob.w; i++) {
|
|
top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(j)[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) && (bottom_blob.h == 1) &&
|
|
(bottom_blob.c == shape_0 || shape_0 == 1)) {
|
|
top_blob.create(bottom_blob.w, shape_1, bottom_blob.c, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int k = 0; k < bottom_blob.c; k++) {
|
|
for (int j = 0; j < shape_1; j++) {
|
|
for (int i = 0; i < bottom_blob.w; i++) {
|
|
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(0)[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if ((bottom_blob.w == shape_2 || shape_2 == 1) && (bottom_blob.h == 1) &&
|
|
(bottom_blob.c == 1)) {
|
|
top_blob.create(bottom_blob.w, shape_1, shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int k = 0; k < shape_0; k++) {
|
|
for (int j = 0; j < shape_1; j++) {
|
|
for (int i = 0; i < bottom_blob.w; i++) {
|
|
top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(0)[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if (bottom_blob.w == 1 && (bottom_blob.h == shape_1 || shape_1 == 1) &&
|
|
(bottom_blob.c == shape_0 || shape_0 == 1)) {
|
|
top_blob.create(shape_2, bottom_blob.h, bottom_blob.c, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int k = 0; k < bottom_blob.c; k++) {
|
|
for (int j = 0; j < bottom_blob.h; j++) {
|
|
for (int i = 0; i < shape_2; i++) {
|
|
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(j)[0];
|
|
}
|
|
}
|
|
}
|
|
} else if (bottom_blob.w == 1 && (bottom_blob.h == shape_1 || shape_1 == 1) &&
|
|
(bottom_blob.c == 1)) {
|
|
top_blob.create(shape_2, bottom_blob.h, shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int k = 0; k < shape_0; k++) {
|
|
for (int j = 0; j < bottom_blob.h; j++) {
|
|
for (int i = 0; i < shape_2; i++) {
|
|
top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(j)[0];
|
|
}
|
|
}
|
|
}
|
|
} else if (bottom_blob.w == 1 && bottom_blob.h == 1 &&
|
|
(bottom_blob.c == shape_0 || shape_0 == 1)) {
|
|
top_blob.create(shape_2, shape_1, bottom_blob.c, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int k = 0; k < bottom_blob.c; k++) {
|
|
for (int j = 0; j < shape_1; j++) {
|
|
for (int i = 0; i < shape_2; i++) {
|
|
top_blob.channel(k).row(j)[i] = bottom_blob.channel(k).row(0)[0];
|
|
}
|
|
}
|
|
}
|
|
} else if (bottom_blob.w == 1 && bottom_blob.h == 1 && bottom_blob.c == 1) {
|
|
top_blob.create(shape_2, shape_1, shape_0, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) return -100;
|
|
for (int k = 0; k < shape_0; k++) {
|
|
for (int j = 0; j < shape_1; j++) {
|
|
for (int i = 0; i < shape_2; i++) {
|
|
top_blob.channel(k).row(j)[i] = bottom_blob.channel(0).row(0)[0];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
fprintf(stderr, "error case\n");
|
|
return -100;
|
|
}
|
|
return 0;
|
|
}
|
|
fprintf(stderr, "top_blob.shape: (%d %d %d)\n", top_blob.c, top_blob.h, top_blob.w);
|
|
}
|
|
|
|
} // namespace mmdeploy
|