mmdeploy/demo/csrc/async_ocr_v2.cpp
Li Zhang 14b2bfd524
[Enhancement] Standardize C API (#634)
* unify C API naming

* fix demo and move apis/c/* -> apis/c/mmdeploy/*

* fix lint

* fix C# project

* fix Java API
2022-07-12 14:04:33 +08:00

155 lines
4.8 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include <fstream>
#include <opencv2/imgcodecs/imgcodecs.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <string>
#include "mmdeploy/model.h"
#include "mmdeploy/text_detector.h"
#include "mmdeploy/text_recognizer.h"
struct ctx_t {
mmdeploy_mat_t* mat;
mmdeploy_text_detection_t* dets{};
int* det_count;
mmdeploy_text_recognition_t* regs{};
mmdeploy_text_recognizer_t recognizer;
};
int det_to_reg(mmdeploy_text_detection_t* results, int* result_count, void* context,
mmdeploy_sender_t* output) {
auto ctx = static_cast<ctx_t*>(context);
ctx->dets = results;
ctx->det_count = result_count;
int ec = mmdeploy_text_recognizer_apply_async_v3(ctx->recognizer, ctx->mat, 1, results,
result_count, output);
return ec;
}
int reg_cont(mmdeploy_text_recognition_t* results, void* context, mmdeploy_sender_t*) {
static_cast<ctx_t*>(context)->regs = results;
return 0;
}
int main(int argc, char* argv[]) {
if (argc != 5) {
fprintf(stderr, "usage:\n ocr device_name det_model_path reg_model_path image_path\n");
return 1;
}
auto device_name = argv[1];
auto det_model_path = argv[2];
auto reg_model_path = argv[3];
auto image_path = argv[4];
cv::Mat img = cv::imread(image_path);
if (!img.data) {
fprintf(stderr, "failed to load image: %s\n", image_path);
return 1;
}
auto pool = mmdeploy_executor_system_pool();
auto thread = mmdeploy_executor_create_thread();
mmdeploy_exec_info prep_exec_info{{}, "Preprocess", pool};
mmdeploy_exec_info dbnet_exec_info{&prep_exec_info, "dbnet", thread};
mmdeploy_exec_info post_exec_info{&dbnet_exec_info, "postprocess", pool};
mmdeploy_text_detector_t text_detector{};
int status{};
mmdeploy_model_t det_model{};
status = mmdeploy_model_create_by_path(det_model_path, &det_model);
if (status != MMDEPLOY_SUCCESS) {
fprintf(stderr, "failed to create model %s\n", det_model_path);
return 1;
}
mmdeploy_model_t reg_model{};
status = mmdeploy_model_create_by_path(reg_model_path, &reg_model);
if (status != MMDEPLOY_SUCCESS) {
fprintf(stderr, "failed to create model %s\n", det_model_path);
return 1;
}
status = mmdeploy_text_detector_create_v2(det_model, device_name, 0, nullptr, &text_detector);
if (status != MMDEPLOY_SUCCESS) {
fprintf(stderr, "failed to create text_detector, code: %d\n", (int)status);
return 1;
}
mmdeploy_exec_info crnn_exec_info{&prep_exec_info, "crnnnet", thread};
post_exec_info.next = &crnn_exec_info;
mmdeploy_text_recognizer_t text_recognizer{};
status = mmdeploy_text_recognizer_create_v2(reg_model, device_name, 0, nullptr, &text_recognizer);
if (status != MMDEPLOY_SUCCESS) {
fprintf(stderr, "failed to create text_recognizer, code: %d\n", (int)status);
return 1;
}
mmdeploy_mat_t mat{
img.data, img.rows, img.cols, 3, MMDEPLOY_PIXEL_FORMAT_BGR, MMDEPLOY_DATA_TYPE_UINT8};
mmdeploy_sender_t sender{};
status = mmdeploy_text_detector_apply_async_v3(text_detector, &mat, 1, &sender);
if (status != 0) {
fprintf(stderr, "failed to apply text detector asyncly, code = %d\n", status);
return 1;
}
ctx_t context{};
context.mat = &mat;
context.recognizer = text_recognizer;
status = mmdeploy_text_detector_continue_async(sender, det_to_reg, &context, &sender);
if (status != 0) {
fprintf(stderr, "failed to attach continuation for text detector, code = %d\n", status);
return 1;
}
status = mmdeploy_text_recognizer_continue_async(sender, reg_cont, &context, &sender);
if (status != 0) {
fprintf(stderr, "failed to attach continuation for text recognizer, code = %d\n", status);
return 1;
}
status = mmdeploy_executor_sync_wait_v2(sender, nullptr);
if (status) {
fprintf(stderr, "failed to sync wait result, code = %d\n", status);
return 1;
}
// results are available after sync_wait
auto bboxes = context.dets;
auto bbox_count = context.det_count;
auto texts = context.regs;
for (int i = 0; i < *bbox_count; ++i) {
fprintf(stdout, "box[%d]: %s\n", i, texts[i].text);
std::vector<cv::Point> poly_points;
for (int j = 0; j < 4; ++j) {
auto const& pt = bboxes[i].bbox[j];
fprintf(stdout, "x: %.2f, y: %.2f, ", pt.x, pt.y);
poly_points.push_back({(int)pt.x, (int)pt.y});
}
fprintf(stdout, "\n");
cv::polylines(img, poly_points, true, cv::Scalar{0, 255, 0});
}
cv::imwrite("output_ocr.png", img);
mmdeploy_text_recognizer_release_result(texts, *bbox_count);
mmdeploy_text_recognizer_destroy(text_recognizer);
mmdeploy_model_destroy(reg_model);
mmdeploy_text_detector_release_result(context.dets, context.det_count, 1);
mmdeploy_text_detector_destroy(text_detector);
mmdeploy_model_destroy(det_model);
mmdeploy_scheduler_destroy(pool);
mmdeploy_scheduler_destroy(thread);
return 0;
}