* add prebuild dockerfile * add prebuild test workflw * update * update * rm other workflow for test * Update docker image * add win1o prebuild * add test prebuild * add windows scripts in prebuilt package * add linux scripts in prebuilt package * generate_build_config.py * fix cudnn search * fix env * fix script * fix rpath * fix cwd * fix windows * fix lint * windows prebuild ci * linux prebuild ci * fix * update trigger * Revert "rm other workflow for test" This reverts commit 0a0387275014efab71046d33a0e52904672b4012. * update sdk build readme * update prebuild * fix dll deps for python >= 3.8 on windows * fix ci * test prebuild * update test script to avoid modify upload folder * add onnxruntime.dll to mmdeploy_python * update prebuild workflow * update prebuild * Update loader.cpp.in * remove exists prebuild files * fix opencv env * update cmake options for mmdeploy python build * remove test code * fix lint --------- Co-authored-by: RunningLeon <mnsheng@yeah.net> Co-authored-by: RunningLeon <maningsheng@sensetime.com>
Precompiled package
This document is going to describe the way to build MMDeploy package.
Prerequisites
-
Download and install Miniconda from the official website.
-
Create conda environments for python 3.6, 3.7, 3.8 and 3.9, respectively.
for PYTHON_VERSION in 3.6 3.7 3.8 3.9 do conda create --name mmdeploy-$PYTHON_VERSION python=$PYTHON_VERSION -y done
-
Prepare MMDeploy dependencies
Please follow the build-on-Linux guide or build-on-Windows guide to install dependencies of MMDeploy, including PyTorch, MMCV, OpenCV, ppl.cv, ONNX Runtime and TensorRT.
Make sure the environment variables
pplcv_DIR
,ONNXRUNTIME_DIR
,TENSORRT_DIR
,CUDNN_DIR
andCUDA_TOOLKIT_ROOT_DIR
are exported.
Run precompiled command
-
On Linux platform,
conda activate mmdeploy-3.6 pip install pyyaml cd the/root/path/of/mmdeploy python tools/package_tools/mmdeploy_builder.py tools/package_tools/configs/linux_x64.yaml .
You will get the precompiled packages
mmdeploy-{version}-linux-x86_64-cuda11.1-tensorrt8.2.3.0
andmmdeploy-{version}-linux-x86_64-onnxruntime1.8.1
in the current directory if everything's going well. -
On Windows platform, open
Anaconda Powershell Prompt
from the start menu and execute:conda activate mmdeploy-3.6 pip install pyyaml cd the/root/path/of/MMDeploy python tools/package_tools/mmdeploy_builder.py tools/package_tools/configs/windows_x64.yaml .
When the build procedure finishes successfully, you will find
mmdeploy-{version}-windows-amd64-cuda11.1-tensorrt8.2.3.0
andmmdeploy-{version}-windows-amd64-onnxruntime1.8.1
precompiled packages in the current directory.