mmdeploy/demo/csrc/c/det_cls.cpp

128 lines
3.8 KiB
C++

#include "mmdeploy/archive/json_archive.h"
#include "mmdeploy/core/logger.h"
#include "mmdeploy/core/mat.h"
#include "mmdeploy/core/module.h"
#include "mmdeploy/core/registry.h"
#include "mmdeploy/core/utils/formatter.h"
#include "mmdeploy/core/value.h"
#include "mmdeploy/experimental/module_adapter.h"
#include "mmdeploy/pipeline.h"
#include "opencv2/imgcodecs.hpp"
const auto config_json = R"(
{
"type": "Pipeline",
"input": "img",
"output": ["dets", "labels"],
"tasks": [
{
"type": "Inference",
"input": "img",
"output": "dets",
"params": { "model": "../_detection_tmp_model" }
},
{
"type": "Pipeline",
"input": ["boxes=*dets", "imgs=+img"],
"tasks": [
{
"type": "Task",
"module": "CropBox",
"scheduler": "crop",
"input": ["imgs", "boxes"],
"output": "patches"
},
{
"type": "Inference",
"input": "patches",
"output": "labels",
"params": { "model": "../_mmcls_tmp_model" }
}
],
"output": "*labels"
}
]
}
)"_json;
using namespace mmdeploy;
class CropBox {
public:
Result<Value> operator()(const Value& img, const Value& dets) {
auto patch = img["ori_img"].get<framework::Mat>();
if (dets.is_object() && dets.contains("bbox")) {
auto _box = from_value<std::vector<float>>(dets["bbox"]);
cv::Rect rect(cv::Rect2f(cv::Point2f(_box[0], _box[1]), cv::Point2f(_box[2], _box[3])));
patch = crop(patch, rect);
}
return Value{{"ori_img", patch}};
}
private:
static framework::Mat crop(const framework::Mat& img, cv::Rect rect) {
cv::Mat mat(img.height(), img.width(), CV_8UC(img.channel()), img.data<void>());
rect &= cv::Rect(cv::Point(0, 0), mat.size());
mat = mat(rect).clone();
std::shared_ptr<void> data(mat.data, [mat = mat](void*) {});
return framework::Mat{mat.rows, mat.cols, img.pixel_format(), img.type(), std::move(data)};
}
};
MMDEPLOY_REGISTER_FACTORY_FUNC(Module, (CropBox, 0),
[](const Value&) { return CreateTask(CropBox{}); });
int main() {
auto config = from_json<Value>(config_json);
mmdeploy_device_t device{};
mmdeploy_device_create("cpu", 0, &device);
mmdeploy_profiler_t profiler{};
mmdeploy_profiler_create("profile.bin", &profiler);
mmdeploy_context_t ctx{};
mmdeploy_context_create(&ctx);
mmdeploy_context_add(ctx, MMDEPLOY_TYPE_DEVICE, nullptr, device);
mmdeploy_context_add(ctx, MMDEPLOY_TYPE_PROFILER, nullptr, profiler);
auto thread_pool = mmdeploy_executor_create_thread_pool(4);
auto infer_thread = mmdeploy_executor_create_thread();
mmdeploy_context_add(ctx, MMDEPLOY_TYPE_SCHEDULER, "preprocess", thread_pool);
mmdeploy_context_add(ctx, MMDEPLOY_TYPE_SCHEDULER, "crop", thread_pool);
mmdeploy_context_add(ctx, MMDEPLOY_TYPE_SCHEDULER, "net", infer_thread);
mmdeploy_context_add(ctx, MMDEPLOY_TYPE_SCHEDULER, "postprocess", thread_pool);
mmdeploy_pipeline_t pipeline{};
if (auto ec = mmdeploy_pipeline_create_v3((mmdeploy_value_t)&config, ctx, &pipeline)) {
MMDEPLOY_ERROR("failed to create pipeline: {}", ec);
return -1;
}
cv::Mat mat = cv::imread("../demo.jpg");
framework::Mat img(mat.rows, mat.cols, PixelFormat::kBGR, DataType::kINT8, mat.data,
framework::Device(0));
Value input = Value::Array{Value::Array{Value::Object{{"ori_img", img}}}};
mmdeploy_value_t tmp{};
mmdeploy_pipeline_apply(pipeline, (mmdeploy_value_t)&input, &tmp);
auto output = std::move(*(Value*)tmp);
mmdeploy_value_destroy(tmp);
MMDEPLOY_INFO("{}", output);
mmdeploy_pipeline_destroy(pipeline);
mmdeploy_context_destroy(ctx);
mmdeploy_scheduler_destroy(infer_thread);
mmdeploy_scheduler_destroy(thread_pool);
mmdeploy_device_destroy(device);
mmdeploy_profiler_destroy(profiler);
return 0;
}