1
0
mirror of https://github.com/open-mmlab/mmdeploy.git synced 2025-01-14 08:09:43 +08:00
hanrui1sensetime c99379cc76
[Fix] Fix ncnn float bugs for segmentor sdk ()
* fix ncnn float bugs for segmentor sdk

* fix segment for all cases

* fix ut

Co-authored-by: RunningLeon <mnsheng@yeah.net>
2022-06-08 22:30:23 +08:00

94 lines
2.9 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "codebase/mmseg/mmseg.h"
#include "core/logger.h"
#include "core/tensor.h"
#include "core/utils/device_utils.h"
#include "core/utils/formatter.h"
#include "opencv_utils.h"
#include "preprocess/transform/transform.h"
namespace mmdeploy::mmseg {
// TODO: resize masks on device
// TODO: when network output is on device, cast it to a smaller type (e.g. int16_t or int8_t
// according to num classes) to reduce DtoH footprint
class ResizeMask : public MMSegmentation {
public:
explicit ResizeMask(const Value &cfg) : MMSegmentation(cfg) {
try {
classes_ = cfg["params"]["num_classes"].get<int>();
little_endian_ = IsLittleEndian();
} catch (const std::exception &e) {
MMDEPLOY_ERROR("no ['params']['num_classes'] is specified in cfg: {}", cfg);
throw_exception(eInvalidArgument);
}
}
Result<Value> operator()(const Value &preprocess_result, const Value &inference_result) {
MMDEPLOY_DEBUG("preprocess: {}\ninference: {}", preprocess_result, inference_result);
auto mask = inference_result["output"].get<Tensor>();
MMDEPLOY_DEBUG("tensor.name: {}, tensor.shape: {}, tensor.data_type: {}", mask.name(),
mask.shape(), mask.data_type());
if (!(mask.shape().size() == 4 && mask.shape(0) == 1 && mask.shape(1) == 1)) {
MMDEPLOY_ERROR("unsupported `output` tensor, shape: {}", mask.shape());
return Status(eNotSupported);
}
auto height = (int)mask.shape(2);
auto width = (int)mask.shape(3);
auto input_height = preprocess_result["img_metas"]["ori_shape"][1].get<int>();
auto input_width = preprocess_result["img_metas"]["ori_shape"][2].get<int>();
Device host{"cpu"};
OUTCOME_TRY(auto host_tensor, MakeAvailableOnDevice(mask, host, stream_));
OUTCOME_TRY(stream_.Wait());
OUTCOME_TRY(auto cv_type, GetCvType(mask.data_type()));
cv::Mat mask_mat(height, width, cv_type, host_tensor.data());
if (mask_mat.channels() > 1) {
cv::extractChannel(mask_mat, mask_mat, little_endian_ ? 0 : mask_mat.channels() - 1);
}
if (mask_mat.type() != CV_32S) {
mask_mat.convertTo(mask_mat, CV_32S);
}
cv::Mat resized_mask = cpu::Resize(mask_mat, input_height, input_width, "nearest");
SegmentorOutput output{cpu::CVMat2Tensor(resized_mask), input_height, input_width, classes_};
return to_value(output);
}
private:
static Result<int> GetCvType(DataType type) {
switch (type) {
case DataType::kFLOAT:
return CV_32F;
case DataType::kINT64:
return CV_32SC2;
case DataType::kINT32:
return CV_32S;
default:
return Status(eNotSupported);
}
}
static bool IsLittleEndian() {
union Un {
char a;
int b;
} un;
un.b = 1;
return (int)un.a == 1;
}
protected:
int classes_{};
bool little_endian_;
};
REGISTER_CODEBASE_COMPONENT(MMSegmentation, ResizeMask);
} // namespace mmdeploy::mmseg