Yue Zhou 42dc5bc316
Support single stage rotated detector in MMRotate (#428)
* fix lint

* fix lint

* add mmrotate part

* update

* update

* fix

* remove init_detector

* success run with bs=1

* nms_rotated support batch

* support [batch_id, class_id, box_id]

* fix

* fix

* Create test_mmrotate_core.py

* add ut

* add ut

* Update nms_rotated.py

* fix

* Revert "fix"

This reverts commit f792387fb449ba091c1d932f29d28214805fb6e3.

* add mmrotate into requirements

* add ut

* update doc

* update

* skip test because mmcv version < 1.4.6

* update

* Update rotated-detection_static.py

* Update rotated-detection_static.py

* Update rotated-detection_static.py

* fix bug of memory leak.

* Update rotated_detection_model.py
2022-05-07 16:11:43 +08:00

97 lines
2.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
model = dict(
type='RotatedRetinaNet',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
zero_init_residual=False,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_input',
num_outs=5),
bbox_head=dict(
type='RotatedRetinaHead',
num_classes=15,
in_channels=256,
stacked_convs=4,
feat_channels=256,
assign_by_circumhbbox=None,
anchor_generator=dict(
type='RotatedAnchorGenerator',
octave_base_scale=4,
scales_per_octave=3,
ratios=[1.0, 0.5, 2.0],
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHAOBBoxCoder',
angle_range='le135',
norm_factor=1,
edge_swap=False,
proj_xy=True,
target_means=(0.0, 0.0, 0.0, 0.0, 0.0),
target_stds=(1.0, 1.0, 1.0, 1.0, 1.0)),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
train_cfg=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1,
iou_calculator=dict(type='RBboxOverlaps2D')),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(iou_thr=0.1),
max_per_img=2000))
# dataset settings
dataset_type = 'DOTADataset'
data_root = '.'
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1024, 1024),
flip=False,
transforms=[
dict(type='RResize'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
test=dict(
type=dataset_type,
ann_file='tests/test_codebase/test_mmrotate/data/dota_sample/',
img_prefix=data_root,
pipeline=test_pipeline,
version='le135'))