55 lines
1.4 KiB
Python
55 lines
1.4 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from mmdeploy_python import PoseDetector
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='show how to use sdk python api')
|
|
parser.add_argument('device_name', help='name of device, cuda or cpu')
|
|
parser.add_argument(
|
|
'model_path',
|
|
help='path of mmdeploy SDK model dumped by model converter')
|
|
parser.add_argument('image_path', help='path of an image')
|
|
parser.add_argument(
|
|
'--bbox',
|
|
default=None,
|
|
nargs='+',
|
|
type=int,
|
|
help='bounding box of an object in format (x, y, w, h)')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
img = cv2.imread(args.image_path)
|
|
|
|
detector = PoseDetector(
|
|
model_path=args.model_path, device_name=args.device_name, device_id=0)
|
|
|
|
if args.bbox is None:
|
|
result = detector(img)
|
|
else:
|
|
# converter (x, y, w, h) -> (left, top, right, bottom)
|
|
print(args.bbox)
|
|
bbox = np.array(args.bbox, dtype=int)
|
|
bbox[2:] += bbox[:2]
|
|
result = detector(img, bbox)
|
|
print(result)
|
|
|
|
_, point_num, _ = result.shape
|
|
points = result[:, :, :2].reshape(point_num, 2)
|
|
for [x, y] in points.astype(int):
|
|
cv2.circle(img, (x, y), 1, (0, 255, 0), 2)
|
|
|
|
cv2.imwrite('output_pose.png', img)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|