106 lines
2.9 KiB
Python
106 lines
2.9 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os.path as osp
|
|
import tempfile
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from mmdeploy.utils import Backend
|
|
from mmdeploy.utils.test import backend_checker
|
|
|
|
onnx_file = tempfile.NamedTemporaryFile(suffix='.onnx').name
|
|
test_img = torch.rand([1, 3, 8, 8])
|
|
|
|
|
|
@pytest.mark.skip(reason='This a not test class but a utility class.')
|
|
class TestModel(nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(3, 8, 3, 1, 1)
|
|
|
|
def forward(self, x):
|
|
return self.conv(x)
|
|
|
|
|
|
test_model = TestModel().eval()
|
|
|
|
|
|
def generate_onnx_file(model):
|
|
with torch.no_grad():
|
|
torch.onnx.export(
|
|
model,
|
|
test_img,
|
|
onnx_file,
|
|
output_names=['output'],
|
|
input_names=['input'],
|
|
keep_initializers_as_inputs=True,
|
|
do_constant_folding=True,
|
|
verbose=False,
|
|
opset_version=11)
|
|
assert osp.exists(onnx_file)
|
|
|
|
|
|
@backend_checker(Backend.TVM)
|
|
def test_onnx2tvm():
|
|
from mmdeploy.apis.tvm import from_onnx, get_library_ext
|
|
model = test_model
|
|
generate_onnx_file(model)
|
|
|
|
work_dir, _ = osp.split(onnx_file)
|
|
file_name = osp.splitext(onnx_file)[0]
|
|
ext = get_library_ext()
|
|
lib_path = osp.join(work_dir, file_name + ext)
|
|
bytecode_path = osp.join(work_dir, file_name + '.code')
|
|
log_file = osp.join(work_dir, file_name + '.log')
|
|
shape = {'input': test_img.shape}
|
|
dtype = {'input': 'float32'}
|
|
target = 'llvm'
|
|
|
|
# test default tuner
|
|
tuner_dict = dict(type='DefaultTuner', target=target)
|
|
from_onnx(onnx_file, lib_path, shape=shape, dtype=dtype, tuner=tuner_dict)
|
|
assert osp.exists(lib_path)
|
|
|
|
# test autotvm
|
|
lib_path = osp.join(work_dir, file_name + '_autotvm' + ext)
|
|
bytecode_path = osp.join(work_dir, file_name + '_autotvm.code')
|
|
log_file = osp.join(work_dir, file_name + '_autotvm.log')
|
|
tuner_dict = dict(
|
|
type='AutoTVMTuner',
|
|
target=target,
|
|
log_file=log_file,
|
|
n_trial=1,
|
|
tuner=dict(type='XGBTuner'))
|
|
from_onnx(
|
|
onnx_file,
|
|
lib_path,
|
|
use_vm=True,
|
|
bytecode_file=bytecode_path,
|
|
shape=shape,
|
|
dtype=dtype,
|
|
tuner=tuner_dict)
|
|
assert osp.exists(lib_path)
|
|
assert osp.exists(bytecode_path)
|
|
|
|
# test ansor
|
|
lib_path = osp.join(work_dir, file_name + '_ansor' + ext)
|
|
bytecode_path = osp.join(work_dir, file_name + '_ansor.code')
|
|
log_file = osp.join(work_dir, file_name + '_ansor.log')
|
|
tuner_dict = dict(
|
|
type='AutoScheduleTuner',
|
|
target=target,
|
|
log_file=log_file,
|
|
num_measure_trials=2)
|
|
from_onnx(
|
|
onnx_file,
|
|
lib_path,
|
|
use_vm=True,
|
|
bytecode_file=bytecode_path,
|
|
shape=shape,
|
|
dtype=dtype,
|
|
tuner=tuner_dict)
|
|
assert osp.exists(lib_path)
|
|
assert osp.exists(bytecode_path)
|