mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
57 lines
1.3 KiB
C++
57 lines
1.3 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#ifndef MMDEPLOY_SRC_APIS_C_HANDLE_H_
|
|
#define MMDEPLOY_SRC_APIS_C_HANDLE_H_
|
|
|
|
#include <memory>
|
|
|
|
#include "core/device.h"
|
|
#include "core/graph.h"
|
|
|
|
namespace mmdeploy {
|
|
|
|
namespace {
|
|
|
|
class Handle {
|
|
public:
|
|
Handle(const char* device_name, int device_id, Value config) {
|
|
device_ = Device(device_name, device_id);
|
|
stream_ = Stream(device_);
|
|
config["context"].update({{"device", device_}, {"stream", stream_}});
|
|
auto creator = Registry<graph::Node>::Get().GetCreator("Pipeline");
|
|
if (!creator) {
|
|
ERROR("failed to find Pipeline creator");
|
|
throw_exception(eEntryNotFound);
|
|
}
|
|
pipeline_ = creator->Create(config);
|
|
if (!pipeline_) {
|
|
ERROR("create pipeline failed");
|
|
throw_exception(eFail);
|
|
}
|
|
pipeline_->Build(graph_);
|
|
}
|
|
|
|
template <typename T>
|
|
Result<Value> Run(T&& input) {
|
|
OUTCOME_TRY(auto output, graph_.Run(std::forward<T>(input)));
|
|
OUTCOME_TRY(stream_.Wait());
|
|
return output;
|
|
}
|
|
|
|
Device& device() { return device_; }
|
|
|
|
Stream& stream() { return stream_; }
|
|
|
|
private:
|
|
Device device_;
|
|
Stream stream_;
|
|
graph::TaskGraph graph_;
|
|
std::unique_ptr<graph::Node> pipeline_;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
} // namespace mmdeploy
|
|
|
|
#endif // MMDEPLOY_SRC_APIS_C_HANDLE_H_
|