mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
161 lines
4.6 KiB
C++
161 lines
4.6 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
#include "gather.h"
|
|
|
|
#include "../ncnn_ops_definer.h"
|
|
#include "assert.h"
|
|
|
|
namespace mmdeploy {
|
|
using namespace ncnn;
|
|
DEFINE_LAYER_CREATOR(Gather)
|
|
DEFINE_NCNN_OPS(Gather, Gather)
|
|
Gather::Gather() {
|
|
one_blob_only = false;
|
|
support_inplace = false;
|
|
}
|
|
|
|
int Gather::load_param(const ParamDict &pd) {
|
|
axis = pd.get(0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Gather only support 1-dim of indices, because the data and indices all has
|
|
// implicit batch in ncnn, this will lead to wrong shape to match onnx result.
|
|
// When indices dim equals to 1, after eliminating implicit batch, the indices
|
|
// dim still be 1. So there is only 1 implicit batch in data, this will make
|
|
// the shape match onnx result.
|
|
int Gather::forward(const std::vector<Mat> &bottom_blobs, std::vector<Mat> &top_blobs,
|
|
const Option &opt) const {
|
|
const Mat &bottom_blob = bottom_blobs[0];
|
|
const Mat &indices = bottom_blobs[1];
|
|
int dims = bottom_blob.dims;
|
|
int indices_dims = indices.dims;
|
|
size_t elemsize = bottom_blob.elemsize;
|
|
int positive_axis = axis < 0 ? dims + axis : axis;
|
|
Mat &top_blob = top_blobs[0];
|
|
assert(indices.dims == 1);
|
|
const float *indices_ptr = indices;
|
|
|
|
if (dims == 1 && indices_dims == 1) // positive_axis == 0
|
|
{
|
|
int w = indices.w;
|
|
top_blob.create(w, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) {
|
|
return -100;
|
|
}
|
|
const float *ptr = bottom_blob;
|
|
float *outptr = top_blob;
|
|
for (int i = 0; i < w; i++) {
|
|
float indice = indices_ptr[i];
|
|
outptr[i] = ptr[(int)(indice + 0.5)];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (dims == 2 && positive_axis == 0 && indices_dims == 1) {
|
|
int w = bottom_blob.w;
|
|
int h = bottom_blob.h;
|
|
top_blob.create(w, indices.w, elemsize, opt.blob_allocator);
|
|
// w -> w
|
|
// h -> indices.w
|
|
// h * w -> indices.w * w
|
|
if (top_blob.empty()) {
|
|
return -100;
|
|
}
|
|
const float *ptr = bottom_blob;
|
|
float *outptr = top_blob;
|
|
for (int i = 0; i < indices.w; i++) {
|
|
const int selected = (int)(indices_ptr[i] + 0.5);
|
|
memcpy(top_blob.row(i), bottom_blob.row(selected), w * elemsize);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (dims == 2 && positive_axis == 1 && indices_dims == 1) {
|
|
int w = bottom_blob.w;
|
|
int h = bottom_blob.h;
|
|
top_blob.create(indices.w, h, elemsize, opt.blob_allocator);
|
|
// w -> h
|
|
// h -> indices.w
|
|
// h * w -> indices.w * h
|
|
if (top_blob.empty()) {
|
|
return -100;
|
|
}
|
|
const float *ptr = bottom_blob;
|
|
float *outptr = top_blob;
|
|
for (int j = 0; j < h; j++) {
|
|
for (int i = 0; i < indices.w; i++) {
|
|
int selected = (int)(indices_ptr[i] + 0.5);
|
|
outptr[j * indices.w + i] = ptr[j * w + selected];
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (dims == 3 && positive_axis == 0 && indices_dims == 1) {
|
|
int w = bottom_blob.w;
|
|
int h = bottom_blob.h;
|
|
int channels = bottom_blob.c;
|
|
top_blob.create(w, h, indices.w, elemsize, opt.blob_allocator);
|
|
|
|
if (top_blob.empty()) {
|
|
return -100;
|
|
}
|
|
for (int i = 0; i < indices.w; i++) {
|
|
int selected = (int)(indices_ptr[i] + 0.5);
|
|
const unsigned char *ptr = bottom_blob.channel(selected);
|
|
unsigned char *outptr = top_blob.channel(i);
|
|
|
|
memcpy(outptr, ptr, w * h * elemsize);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (dims == 3 && positive_axis == 1 && indices_dims == 1) {
|
|
int w = bottom_blob.w;
|
|
int h = bottom_blob.h;
|
|
int channels = bottom_blob.c;
|
|
top_blob.create(w, indices.w, channels, elemsize, opt.blob_allocator);
|
|
#pragma omp parallel for num_threads(opt.num_threads)
|
|
// use parallel programming
|
|
for (int i = 0; i < channels; i++) {
|
|
float *outptr = top_blob.channel(i);
|
|
const float *ptr = bottom_blob.channel(i);
|
|
for (int j = 0; j < indices.w; j++) {
|
|
int selected = (int)(indices_ptr[j] + 0.5);
|
|
for (int k = 0; k < w; k++) {
|
|
outptr[j * w + k] = ptr[selected * w + k];
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (dims == 3 && positive_axis == 2 && indices_dims == 1) {
|
|
int w = bottom_blob.w;
|
|
int h = bottom_blob.h;
|
|
int channels = bottom_blob.c;
|
|
top_blob.create(indices.w, h, channels, elemsize, opt.blob_allocator);
|
|
#pragma omp parallel for num_threads(opt.num_threads)
|
|
// use parallel programming
|
|
for (int i = 0; i < channels; i++) {
|
|
float *outptr = top_blob.channel(i);
|
|
const float *ptr = bottom_blob.channel(i);
|
|
for (int j = 0; j < h; j++) {
|
|
for (int k = 0; k < indices.w; k++) {
|
|
int selected = (int)(indices_ptr[k] + 0.5);
|
|
outptr[j * indices.w + k] = ptr[j * w + selected];
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
} // namespace mmdeploy
|