lvhan028 36124f6205
Merge sdk (#251)
* check in cmake

* move backend_ops to csrc/backend_ops

* check in preprocess, model, some codebase and their c-apis

* check in CMakeLists.txt

* check in parts of test_csrc

* commit everything else

* add readme

* update core's BUILD_INTERFACE directory

* skip codespell on third_party

* update trt_net and ort_net's CMakeLists

* ignore clion's build directory

* check in pybind11

* add onnx.proto. Remove MMDeploy's dependency on ncnn's source code

* export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON

* remove useless message

* target include directory is wrong

* change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net

* skip install directory

* update project's cmake

* remove useless code

* set CMAKE_BUILD_TYPE to Release by force if it isn't set by user

* update custom ops CMakeLists

* pass object target's source lists

* fix lint end-of-file

* fix lint: trailing whitespace

* fix codespell hook

* remove bicubic_interpolate to csrc/backend_ops/

* set MMDEPLOY_BUILD_SDK OFF

* change custom ops build command

* add spdlog installation command

* update docs on how to checkout pybind11

* move bicubic_interpolate to backend_ops/tensorrt directory

* remove useless code

* correct cmake

* fix typo

* fix typo

* fix install directory

* correct sdk's readme

* set cub dir when cuda version < 11.0

* change directory where clang-format will apply to

* fix build command

* add .clang-format

* change clang-format style from google to file

* reformat csrc/backend_ops

* format sdk's code

* turn off clang-format for some files

* add -Xcompiler=-fno-gnu-unique

* fix trt topk initialize

* check in config for sdk demo

* update cmake script and csrc's readme

* correct config's path

* add cuda include directory, otherwise compile failed in case of tensorrt8.2

* clang-format onnx2ncnn.cpp

Co-authored-by: zhangli <lzhang329@gmail.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00

878 lines
35 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "topk.h"
#include <math.h>
#include <functional>
#include "../ncnn_ops_definer.h"
namespace mmdeploy {
using namespace ncnn;
DEFINE_LAYER_CREATOR(TopK)
DEFINE_NCNN_OPS(TopK, TopK)
TopK::TopK() {
one_blob_only = false;
support_inplace = false;
}
int TopK::load_param(const ParamDict& pd) {
axis = pd.get(0, -1);
largest = pd.get(1, 1);
sorted = pd.get(2, 1);
keep_dims = pd.get(3, 1);
return 0;
}
int TopK::forward(const std::vector<Mat>& bottom_blobs, std::vector<Mat>& top_blobs,
const Option& opt) const {
int dims = bottom_blobs[0].dims;
int positive_axis = axis < 0 ? dims + axis : axis;
int topk;
if (bottom_blobs.size() == 2) {
const Mat& topk_blob = bottom_blobs[1];
topk = (int)(topk_blob[0] + 0.5);
} else if (bottom_blobs.size() == 1) {
topk = 1;
} else {
fprintf(stderr, "topk input blobs should be 1 or 2, but not %ld\n", bottom_blobs.size());
return -103;
}
// To do: Cut the top_val_blob after unit test. And we should change them in
// param files.
// Adaptive outputs. For onnx TopK, we output 2 blobs, for ArgMax, we output
// 1 blob.
Mat& top_val_blob = top_blobs[0];
Mat& top_ind_blob = top_blobs.size() == 2 ? top_blobs[1] : top_val_blob;
if (topk > 1) {
// real topk
if (keep_dims == 0) {
fprintf(stderr, "real topk should not reduce dims!\n");
return -102;
}
if (dims == 1 && positive_axis == 0) {
if (topk > bottom_blobs[0].w) {
fprintf(stderr, "topk should not greater than total items!\n");
return -100;
}
top_val_blob.create(topk, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
top_ind_blob.create(topk, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
const float* ptr = bottom_blobs[0];
std::vector<std::pair<float, int> > vec;
vec.resize(bottom_blobs[0].w);
if (largest == 1) {
for (int i = 0; i < bottom_blobs[0].w; i++) {
vec[i] = std::make_pair(ptr[i], -i);
}
std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
std::greater<std::pair<float, int> >());
} else if (largest == 0) {
for (int i = 0; i < bottom_blobs[0].w; i++) {
vec[i] = std::make_pair(ptr[i], i);
}
std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
std::less<std::pair<float, int> >());
} else {
fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest);
return -100;
}
float* valptr = top_val_blob;
float* indptr = top_ind_blob;
if (sorted == 1) {
for (int i = 0; i < topk; i++) {
valptr[i] = vec[i].first;
indptr[i] = abs(vec[i].second);
}
} else if (sorted == 0) {
int cur = 0;
float valtarget = vec[topk - 1].first;
int indtarget = (int)(abs(vec[topk - 1].second) + 0.5);
// pair comparison
if (largest == 1) {
for (int i = 0; i < bottom_blobs[0].w; i++) {
if (cur >= topk) break;
if (bottom_blobs[0][i] > valtarget) {
valptr[cur] = bottom_blobs[0][i];
indptr[cur] = i;
cur++;
} else if (bottom_blobs[0][i] == valtarget && i <= indtarget) {
valptr[cur] = bottom_blobs[0][i];
indptr[cur] = i;
cur++;
}
}
} else {
for (int i = 0; i < bottom_blobs[0].w; i++) {
if (cur >= topk) break;
if (bottom_blobs[0][i] < valtarget) {
valptr[cur] = bottom_blobs[0][i];
indptr[cur] = i;
cur++;
} else if (bottom_blobs[0][i] == valtarget && i <= indtarget) {
valptr[cur] = bottom_blobs[0][i];
indptr[cur] = i;
cur++;
}
}
}
}
}
if (dims == 2 && positive_axis == 0) {
if (topk > bottom_blobs[0].h) {
fprintf(stderr, "topk should not greater than total items!\n");
return -100;
}
top_val_blob.create(bottom_blobs[0].w, topk, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
top_ind_blob.create(bottom_blobs[0].w, topk, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
for (int col = 0; col < bottom_blobs[0].w; col++) {
std::vector<std::pair<float, int> > vec;
vec.resize(bottom_blobs[0].h);
if (largest == 1) {
for (int i = 0; i < bottom_blobs[0].h; i++) {
vec[i] = std::make_pair(bottom_blobs[0].row(i)[col], -i);
}
std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
std::greater<std::pair<float, int> >());
} else if (largest == 0) {
for (int i = 0; i < bottom_blobs[0].h; i++) {
vec[i] = std::make_pair(bottom_blobs[0].row(i)[col], i);
}
std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
std::less<std::pair<float, int> >());
} else {
fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest);
return -100;
}
if (sorted == 1) {
for (int i = 0; i < topk; i++) {
top_val_blob.row(i)[col] = vec[i].first;
top_ind_blob.row(i)[col] = abs(vec[i].second);
}
} else if (sorted == 0) {
int cur = 0;
float valtarget = vec[topk - 1].first;
int indtarget = (int)(abs(vec[topk - 1].second) + 0.5);
if (largest == 1) {
for (int i = 0; i < bottom_blobs[0].h; i++) {
if (cur >= topk) break;
if (bottom_blobs[0].row(i)[col] > valtarget) {
top_val_blob.row(cur)[col] = bottom_blobs[0].row(i)[col];
top_ind_blob.row(cur)[col] = i;
cur++;
} else if (bottom_blobs[0].row(i)[col] == valtarget && i <= indtarget) {
top_val_blob.row(cur)[col] = bottom_blobs[0].row(i)[col];
top_ind_blob.row(cur)[col] = i;
cur++;
}
}
} else {
for (int i = 0; i < bottom_blobs[0].h; i++) {
if (cur >= topk) break;
if (bottom_blobs[0].row(i)[col] < valtarget) {
top_val_blob.row(cur)[col] = bottom_blobs[0].row(i)[col];
top_ind_blob.row(cur)[col] = i;
cur++;
} else if (bottom_blobs[0].row(i)[col] == valtarget && i <= indtarget) {
top_val_blob.row(cur)[col] = bottom_blobs[0].row(i)[col];
top_ind_blob.row(cur)[col] = i;
cur++;
}
}
}
} else {
fprintf(stderr, "sorted attribute should be 0 or 1, but not %d\n", sorted);
return -100;
}
}
}
if (dims == 2 && positive_axis == 1) {
if (topk > bottom_blobs[0].w) {
fprintf(stderr, "topk should not greater than total items!\n");
return -100;
}
top_val_blob.create(topk, bottom_blobs[0].h, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
top_ind_blob.create(topk, bottom_blobs[0].h, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
for (int r = 0; r < bottom_blobs[0].h; r++) {
std::vector<std::pair<float, int> > vec;
vec.resize(bottom_blobs[0].w);
if (largest == 1) {
for (int i = 0; i < bottom_blobs[0].w; i++) {
vec[i] = std::make_pair(bottom_blobs[0].row(r)[i], -i);
}
std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
std::greater<std::pair<float, int> >());
} else if (largest == 0) {
for (int i = 0; i < bottom_blobs[0].w; i++) {
vec[i] = std::make_pair(bottom_blobs[0].row(r)[i], i);
}
std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
std::less<std::pair<float, int> >());
} else {
fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest);
return -100;
}
if (sorted == 1) {
for (int i = 0; i < topk; i++) {
top_val_blob.row(r)[i] = vec[i].first;
top_ind_blob.row(r)[i] = abs(vec[i].second);
}
} else if (sorted == 0) {
int cur = 0;
float valtarget = vec[topk - 1].first;
int indtarget = (int)(abs(vec[topk - 1].second) + 0.5);
if (largest == 1) {
for (int i = 0; i < bottom_blobs[0].w; i++) {
if (cur >= topk) break;
if (bottom_blobs[0].row(r)[i] > valtarget) {
top_val_blob.row(r)[cur] = bottom_blobs[0].row(r)[i];
top_ind_blob.row(r)[cur] = i;
cur++;
} else if (bottom_blobs[0].row(r)[i] == valtarget && i <= indtarget) {
top_val_blob.row(r)[cur] = bottom_blobs[0].row(r)[i];
top_ind_blob.row(r)[cur] = i;
cur++;
}
}
} else {
for (int i = 0; i < bottom_blobs[0].w; i++) {
if (cur >= topk) break;
if (bottom_blobs[0].row(r)[i] < valtarget) {
top_val_blob.row(r)[cur] = bottom_blobs[0].row(r)[i];
top_ind_blob.row(r)[cur] = i;
cur++;
} else if (bottom_blobs[0].row(r)[i] == valtarget && i <= indtarget) {
top_val_blob.row(r)[cur] = bottom_blobs[0].row(r)[i];
top_ind_blob.row(r)[cur] = i;
cur++;
}
}
}
} else {
fprintf(stderr, "sorted attribute should be 0 or 1, but not %d\n", sorted);
return -100;
}
}
}
if (dims == 3 && positive_axis == 0) {
if (topk > bottom_blobs[0].c) {
fprintf(stderr, "topk should not greater than total items!\n");
return -100;
}
top_val_blob.create(bottom_blobs[0].w, bottom_blobs[0].h, topk, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
top_ind_blob.create(bottom_blobs[0].w, bottom_blobs[0].h, topk, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
for (int r = 0; r < bottom_blobs[0].h; r++) {
for (int col = 0; col < bottom_blobs[0].w; col++) {
std::vector<std::pair<float, int> > vec;
vec.resize(bottom_blobs[0].c);
if (largest == 1) {
for (int i = 0; i < bottom_blobs[0].c; i++) {
vec[i] = std::make_pair(bottom_blobs[0].channel(i).row(r)[col], -i);
}
std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
std::greater<std::pair<float, int> >());
} else if (largest == 0) {
for (int i = 0; i < bottom_blobs[0].c; i++) {
vec[i] = std::make_pair(bottom_blobs[0].channel(i).row(r)[col], i);
}
std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
std::less<std::pair<float, int> >());
} else {
fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest);
return -100;
}
if (sorted == 1) {
for (int i = 0; i < topk; i++) {
top_val_blob.channel(i).row(r)[col] = vec[i].first;
top_ind_blob.channel(i).row(r)[col] = abs(vec[i].second);
}
} else if (sorted == 0) {
int cur = 0;
float valtarget = vec[topk - 1].first;
int indtarget = (int)(abs(vec[topk - 1].second) + 0.5);
if (largest == 1) {
for (int i = 0; i < bottom_blobs[0].c; i++) {
if (cur >= topk) break;
if (bottom_blobs[0].channel(i).row(r)[col] > valtarget) {
top_val_blob.channel(cur).row(r)[col] = bottom_blobs[0].channel(i).row(r)[col];
top_ind_blob.channel(cur).row(r)[col] = i;
cur++;
} else if (bottom_blobs[0].channel(i).row(r)[col] == valtarget && i <= indtarget) {
top_val_blob.channel(cur).row(r)[col] = bottom_blobs[0].channel(i).row(r)[col];
top_ind_blob.channel(cur).row(r)[col] = i;
cur++;
}
}
} else {
for (int i = 0; i < bottom_blobs[0].c; i++) {
if (cur >= topk) break;
if (bottom_blobs[0].channel(i).row(r)[col] < valtarget) {
top_val_blob.channel(cur).row(r)[col] = bottom_blobs[0].channel(i).row(r)[col];
top_ind_blob.channel(cur).row(r)[col] = i;
cur++;
} else if (bottom_blobs[0].channel(i).row(r)[col] == valtarget && i <= indtarget) {
top_val_blob.channel(cur).row(r)[col] = bottom_blobs[0].channel(i).row(r)[col];
top_ind_blob.channel(cur).row(r)[col] = i;
cur++;
}
}
}
} else {
fprintf(stderr, "sorted attribute should be 0 or 1, but not %d\n", sorted);
return -100;
}
}
}
}
if (dims == 3 && positive_axis == 1) {
if (topk > bottom_blobs[0].h) {
fprintf(stderr, "topk should not greater than total items!\n");
return -100;
}
top_val_blob.create(bottom_blobs[0].w, topk, bottom_blobs[0].c, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
top_ind_blob.create(bottom_blobs[0].w, topk, bottom_blobs[0].c, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
for (int page = 0; page < bottom_blobs[0].c; page++) {
for (int col = 0; col < bottom_blobs[0].w; col++) {
std::vector<std::pair<float, int> > vec;
vec.resize(bottom_blobs[0].h);
if (largest == 1) {
for (int i = 0; i < bottom_blobs[0].h; i++) {
vec[i] = std::make_pair(bottom_blobs[0].channel(page).row(i)[col], -i);
}
std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
std::greater<std::pair<float, int> >());
} else if (largest == 0) {
for (int i = 0; i < bottom_blobs[0].h; i++) {
vec[i] = std::make_pair(bottom_blobs[0].channel(page).row(i)[col], i);
}
std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
std::less<std::pair<float, int> >());
} else {
fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest);
return -100;
}
if (sorted == 1) {
for (int i = 0; i < topk; i++) {
top_val_blob.channel(page).row(i)[col] = vec[i].first;
top_ind_blob.channel(page).row(i)[col] = abs(vec[i].second);
}
} else if (sorted == 0) {
int cur = 0;
float valtarget = vec[topk - 1].first;
int indtarget = (int)(abs(vec[topk - 1].second) + 0.5);
for (int i = 0; i < bottom_blobs[0].h; i++) {
if (cur >= topk) break;
if (largest == 1) {
if (bottom_blobs[0].channel(page).row(i)[col] > valtarget) {
top_val_blob.channel(page).row(cur)[col] =
bottom_blobs[0].channel(page).row(i)[col];
top_ind_blob.channel(page).row(cur)[col] = i;
cur++;
} else if (bottom_blobs[0].channel(page).row(i)[col] == valtarget &&
i <= indtarget) {
top_val_blob.channel(page).row(cur)[col] =
bottom_blobs[0].channel(page).row(i)[col];
top_ind_blob.channel(page).row(cur)[col] = i;
cur++;
}
} else {
if (bottom_blobs[0].channel(page).row(i)[col] < valtarget) {
top_val_blob.channel(page).row(cur)[col] =
bottom_blobs[0].channel(page).row(i)[col];
top_ind_blob.channel(page).row(cur)[col] = i;
cur++;
} else if (bottom_blobs[0].channel(page).row(i)[col] == valtarget &&
i <= indtarget) {
top_val_blob.channel(page).row(cur)[col] =
bottom_blobs[0].channel(page).row(i)[col];
top_ind_blob.channel(page).row(cur)[col] = i;
cur++;
}
}
}
} else {
fprintf(stderr, "sorted attribute should be 0 or 1, but not %d\n", sorted);
return -100;
}
}
}
}
if (dims == 3 && positive_axis == 2) {
if (topk > bottom_blobs[0].w) {
fprintf(stderr, "topk should not greater than total items!\n");
return -100;
}
top_val_blob.create(topk, bottom_blobs[0].h, bottom_blobs[0].c, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
top_ind_blob.create(topk, bottom_blobs[0].h, bottom_blobs[0].c, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
for (int page = 0; page < bottom_blobs[0].c; page++) {
for (int r = 0; r < bottom_blobs[0].h; r++) {
std::vector<std::pair<float, int> > vec;
vec.resize(bottom_blobs[0].w);
if (largest == 1) {
for (int i = 0; i < bottom_blobs[0].w; i++) {
vec[i] = std::make_pair(bottom_blobs[0].channel(page).row(r)[i], -i);
}
std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
std::greater<std::pair<float, int> >());
} else if (largest == 0) {
for (int i = 0; i < bottom_blobs[0].w; i++) {
vec[i] = std::make_pair(bottom_blobs[0].channel(page).row(r)[i], i);
}
std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
std::less<std::pair<float, int> >());
} else {
fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest);
return -100;
}
if (sorted == 1) {
for (int i = 0; i < topk; i++) {
top_val_blob.channel(page).row(r)[i] = vec[i].first;
top_ind_blob.channel(page).row(r)[i] = abs(vec[i].second);
}
} else if (sorted == 0) {
int cur = 0;
float valtarget = vec[topk - 1].first;
int indtarget = (int)(abs(vec[topk - 1].second) + 0.5);
if (largest == 1) {
for (int i = 0; i < bottom_blobs[0].w; i++) {
if (cur >= topk) break;
if (bottom_blobs[0].channel(page).row(r)[i] > valtarget) {
top_val_blob.channel(page).row(r)[cur] = bottom_blobs[0].channel(page).row(r)[i];
top_ind_blob.channel(page).row(r)[cur] = i;
cur++;
} else if (bottom_blobs[0].channel(page).row(r)[i] == valtarget && i <= indtarget) {
top_val_blob.channel(page).row(r)[cur] = bottom_blobs[0].channel(page).row(r)[i];
top_ind_blob.channel(page).row(r)[cur] = i;
cur++;
}
}
} else {
for (int i = 0; i < bottom_blobs[0].w; i++) {
if (cur >= topk) break;
if (bottom_blobs[0].channel(page).row(r)[i] < valtarget) {
top_val_blob.channel(page).row(r)[cur] = bottom_blobs[0].channel(page).row(r)[i];
top_ind_blob.channel(page).row(r)[cur] = i;
cur++;
} else if (bottom_blobs[0].channel(page).row(r)[i] == valtarget && i <= indtarget) {
top_val_blob.channel(page).row(r)[cur] = bottom_blobs[0].channel(page).row(r)[i];
top_ind_blob.channel(page).row(r)[cur] = i;
cur++;
}
}
}
} else {
fprintf(stderr, "sorted attribute should be 0 or 1, but not %d\n", sorted);
return -100;
}
}
}
}
} else {
if (topk <= 0) {
fprintf(stderr, "topk should not <= 0!\n");
return -102;
}
if (dims == 1 && positive_axis == 0) {
if (topk > bottom_blobs[0].w) {
fprintf(stderr, "topk should not greater than total items!\n");
return -100;
}
top_val_blob.create(topk, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
if (top_blobs.size() == 2) {
top_ind_blob.create(topk, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
}
const float* ptr = bottom_blobs[0];
std::vector<float> vec;
vec.resize(bottom_blobs[0].w);
float* valptr = top_val_blob;
float* indptr;
if (top_blobs.size() == 2) indptr = top_ind_blob;
for (int i = 0; i < bottom_blobs[0].w; i++) {
vec[i] = ptr[i];
}
if (largest == 1) {
auto index_iter = std::max_element(vec.begin(), vec.end());
valptr[0] = *index_iter;
if (top_blobs.size() == 2)
indptr[0] = std::distance(vec.begin(), index_iter);
else
valptr[0] = std::distance(vec.begin(), index_iter); // replace with index
} else if (largest == 0) {
auto index_iter = std::min_element(vec.begin(), vec.end());
valptr[0] = *index_iter;
if (top_blobs.size() == 2)
indptr[0] = std::distance(vec.begin(), index_iter);
else
valptr[0] = std::distance(vec.begin(), index_iter); // replace with index
} else {
fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest);
return -100;
}
}
if (dims == 2 && positive_axis == 0) {
if (keep_dims == 1) {
top_val_blob.create(bottom_blobs[0].w, topk, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
if (top_blobs.size() == 2) {
top_ind_blob.create(bottom_blobs[0].w, topk, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
}
} else {
top_val_blob.create(bottom_blobs[0].w, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
if (top_blobs.size() == 2) {
top_ind_blob.create(bottom_blobs[0].w, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
}
}
const float* ptr = bottom_blobs[0];
std::vector<float> vec;
vec.resize(bottom_blobs[0].h);
float* valptr = top_val_blob;
float* indptr;
if (top_blobs.size() == 2) indptr = top_ind_blob;
for (int col = 0; col < bottom_blobs[0].w; col++) {
for (int i = 0; i < bottom_blobs[0].h; i++) {
vec[i] = ptr[i * bottom_blobs[0].w + col];
}
if (largest == 1) {
auto index_iter = std::max_element(vec.begin(), vec.end());
valptr[col] = *index_iter;
if (top_blobs.size() == 2)
indptr[col] = std::distance(vec.begin(), index_iter);
else
valptr[col] = std::distance(vec.begin(), index_iter);
} else if (largest == 0) {
auto index_iter = std::min_element(vec.begin(), vec.end());
valptr[col] = *index_iter;
if (top_blobs.size() == 2)
indptr[col] = std::distance(vec.begin(), index_iter);
else
valptr[col] = std::distance(vec.begin(), index_iter);
} else {
fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest);
return -100;
}
}
}
if (dims == 2 && positive_axis == 1) {
if (keep_dims == 1) {
top_val_blob.create(topk, bottom_blobs[0].h, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
if (top_blobs.size() == 2) {
top_ind_blob.create(topk, bottom_blobs[0].h, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
}
} else {
top_val_blob.create(bottom_blobs[0].h, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
if (top_blobs.size() == 2) {
top_ind_blob.create(bottom_blobs[0].h, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
}
}
const float* ptr = bottom_blobs[0];
std::vector<float> vec;
vec.resize(bottom_blobs[0].w);
float* valptr = top_val_blob;
float* indptr;
if (top_blobs.size() == 2) indptr = top_ind_blob;
for (int r = 0; r < bottom_blobs[0].h; r++) {
for (int i = 0; i < bottom_blobs[0].w; i++) {
vec[i] = ptr[r * bottom_blobs[0].w + i];
}
if (largest == 1) {
auto index_iter = std::max_element(vec.begin(), vec.end());
valptr[r] = *index_iter;
if (top_blobs.size() == 2)
indptr[r] = std::distance(vec.begin(), index_iter);
else
valptr[r] = std::distance(vec.begin(), index_iter);
} else if (largest == 0) {
auto index_iter = std::min_element(vec.begin(), vec.end());
valptr[r] = *index_iter;
if (top_blobs.size() == 2)
indptr[r] = std::distance(vec.begin(), index_iter);
else
valptr[r] = std::distance(vec.begin(), index_iter);
} else {
fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest);
return -100;
}
}
}
if (dims == 3 && positive_axis == 0) {
if (keep_dims == 1) {
top_val_blob.create(bottom_blobs[0].w, bottom_blobs[0].h, topk, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
if (top_blobs.size() == 2) {
top_ind_blob.create(bottom_blobs[0].w, bottom_blobs[0].h, topk, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
}
} else {
top_val_blob.create(bottom_blobs[0].w, bottom_blobs[0].h, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
if (top_blobs.size() == 2) {
top_ind_blob.create(bottom_blobs[0].w, bottom_blobs[0].h, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
}
}
const float* ptr = bottom_blobs[0];
std::vector<float> vec;
vec.resize(bottom_blobs[0].c);
float* valptr = top_val_blob;
float* indptr;
if (top_blobs.size() == 2) indptr = top_ind_blob;
for (int r = 0; r < bottom_blobs[0].h; r++) {
for (int col = 0; col < bottom_blobs[0].w; col++) {
for (int i = 0; i < bottom_blobs[0].c; i++) {
ptr = bottom_blobs[0].channel(i);
vec[i] = ptr[r * bottom_blobs[0].w + col];
}
if (largest == 1) {
auto index_iter = std::max_element(vec.begin(), vec.end());
valptr[r * top_val_blob.w + col] = *index_iter;
if (top_blobs.size() == 2)
indptr[r * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter);
else
valptr[r * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter);
} else if (largest == 0) {
auto index_iter = std::min_element(vec.begin(), vec.end());
valptr[r * top_val_blob.w + col] = *index_iter;
if (top_blobs.size() == 2)
indptr[r * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter);
else
valptr[r * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter);
} else {
fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest);
return -100;
}
}
}
}
if (dims == 3 && positive_axis == 1) {
if (keep_dims == 1) {
top_val_blob.create(bottom_blobs[0].w, topk, bottom_blobs[0].c, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
if (top_blobs.size() == 2) {
top_ind_blob.create(bottom_blobs[0].w, topk, bottom_blobs[0].c, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
}
std::vector<float> vec;
vec.resize(bottom_blobs[0].h);
for (int page = 0; page < bottom_blobs[0].c; page++) {
const float* ptr = bottom_blobs[0].channel(page);
float* valptr = top_val_blob.channel(page);
float* indptr;
if (top_blobs.size() == 2) indptr = top_ind_blob.channel(page);
for (int col = 0; col < bottom_blobs[0].w; col++) {
for (int i = 0; i < bottom_blobs[0].h; i++) {
vec[i] = ptr[i * bottom_blobs[0].w + col];
}
if (largest == 1) {
auto index_iter = std::max_element(vec.begin(), vec.end());
valptr[col] = *index_iter;
if (top_blobs.size() == 2)
indptr[col] = std::distance(vec.begin(), index_iter);
else
valptr[col] = std::distance(vec.begin(), index_iter);
} else if (largest == 0) {
auto index_iter = std::min_element(vec.begin(), vec.end());
valptr[col] = *index_iter;
if (top_blobs.size() == 2)
indptr[col] = std::distance(vec.begin(), index_iter);
else
valptr[col] = std::distance(vec.begin(), index_iter);
} else {
fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest);
return -100;
}
}
}
} else {
top_val_blob.create(bottom_blobs[0].w, bottom_blobs[0].c, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
if (top_blobs.size() == 2) {
top_ind_blob.create(bottom_blobs[0].w, bottom_blobs[0].c, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
}
std::vector<float> vec;
vec.resize(bottom_blobs[0].h);
float* valptr = top_val_blob;
float* indptr;
if (top_blobs.size() == 2) indptr = top_ind_blob;
for (int page = 0; page < bottom_blobs[0].c; page++) {
const float* ptr = bottom_blobs[0].channel(page);
for (int col = 0; col < bottom_blobs[0].w; col++) {
for (int i = 0; i < bottom_blobs[0].h; i++) {
vec[i] = ptr[i * bottom_blobs[0].w + col];
}
if (largest == 1) {
auto index_iter = std::max_element(vec.begin(), vec.end());
valptr[page * top_val_blob.w + col] = *index_iter;
if (top_blobs.size() == 2)
indptr[page * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter);
else
valptr[page * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter);
} else if (largest == 0) {
auto index_iter = std::min_element(vec.begin(), vec.end());
valptr[page * top_val_blob.w + col] = *index_iter;
if (top_blobs.size() == 2)
indptr[page * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter);
else
valptr[page * top_ind_blob.w + col] = std::distance(vec.begin(), index_iter);
} else {
fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest);
return -100;
}
}
}
}
}
if (dims == 3 && positive_axis == 2) {
if (keep_dims == 1) {
top_val_blob.create(topk, bottom_blobs[0].h, bottom_blobs[0].c, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
if (top_blobs.size() == 2) {
top_ind_blob.create(topk, bottom_blobs[0].h, bottom_blobs[0].c, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
}
std::vector<float> vec;
vec.resize(bottom_blobs[0].w);
for (int page = 0; page < bottom_blobs[0].c; page++) {
const float* ptr = bottom_blobs[0].channel(page);
float* valptr = top_val_blob.channel(page);
float* indptr;
if (top_blobs.size() == 2) indptr = top_ind_blob.channel(page);
for (int r = 0; r < bottom_blobs[0].h; r++) {
for (int i = 0; i < bottom_blobs[0].w; i++) {
vec[i] = ptr[r * bottom_blobs[0].w + i];
}
if (largest == 1) {
auto index_iter = std::max_element(vec.begin(), vec.end());
valptr[r] = *index_iter;
if (top_blobs.size() == 2)
indptr[r] = std::distance(vec.begin(), index_iter);
else
valptr[r] = std::distance(vec.begin(), index_iter);
} else if (largest == 0) {
auto index_iter = std::min_element(vec.begin(), vec.end());
valptr[r] = *index_iter;
if (top_blobs.size() == 2)
indptr[r] = std::distance(vec.begin(), index_iter);
else
valptr[r] = std::distance(vec.begin(), index_iter);
} else {
fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest);
return -100;
}
}
}
} else {
top_val_blob.create(bottom_blobs[0].h, bottom_blobs[0].c, 4u, opt.blob_allocator);
if (top_val_blob.empty()) return -100;
if (top_blobs.size() == 2) {
top_ind_blob.create(bottom_blobs[0].h, bottom_blobs[0].c, 4u, opt.blob_allocator);
if (top_ind_blob.empty()) return -100;
}
std::vector<float> vec;
vec.resize(bottom_blobs[0].w);
float* valptr = top_val_blob;
float* indptr;
if (top_blobs.size() == 2) indptr = top_ind_blob;
for (int page = 0; page < bottom_blobs[0].c; page++) {
const float* ptr = bottom_blobs[0].channel(page);
for (int r = 0; r < bottom_blobs[0].h; r++) {
for (int i = 0; i < bottom_blobs[0].w; i++) {
vec[i] = ptr[r * bottom_blobs[0].w + i];
}
if (largest == 1) {
auto index_iter = std::max_element(vec.begin(), vec.end());
valptr[page * top_val_blob.w + r] = *index_iter;
if (top_blobs.size() == 2)
indptr[page * top_ind_blob.w + r] = std::distance(vec.begin(), index_iter);
else
valptr[page * top_ind_blob.w + r] = std::distance(vec.begin(), index_iter);
} else if (largest == 0) {
auto index_iter = std::min_element(vec.begin(), vec.end());
valptr[page * top_val_blob.w + r] = *index_iter;
if (top_blobs.size() == 2)
indptr[page * top_val_blob.w + r] = std::distance(vec.begin(), index_iter);
else
valptr[page * top_ind_blob.w + r] = std::distance(vec.begin(), index_iter);
} else {
fprintf(stderr, "largest attribute should be 0 or 1, but not %d\n", largest);
return -100;
}
}
}
}
}
}
return 0;
}
} // namespace mmdeploy