mmdeploy/csrc/apis/c/text_recognizer.cpp
lzhangzz 46bfe0ac87
[Feature] New pipeline & executor for SDK (#497)
* executor prototype

* add split/when_all

* fix GCC build

* WIP let_value

* fix let_value

* WIP ensure_started

* ensure_started & start_detached

* fix let_value + when_all combo on MSVC 142

* fix static thread pool

* generic just, then, let_value, sync_wait

* minor

* generic split and when_all

* fully generic sender adapters

* when_all: workaround for GCC7

* support legacy spdlog

* fix memleak

* bulk

* static detector

* fix bulk & first pipeline

* bulk for static thread pools

* fix on MSVC

* WIP async batch submission

* WIP collation

* async batch

* fix detector

* fix async detector

* fix

* fix

* debug

* fix cuda allocator

* WIP type erased executor

* better type erasure

* simplify C API impl

* Expand & type erase TC

* deduction guide for type erased senders

* fix GCC build

* when_all for arrays of Value senders

* WIP pipeline v2

* WIP pipeline parser

* WIP timed batch operation

* add registry

* experiment

* fix pipeline

* naming

* fix mem-leak

* fix deferred batch operation

* WIP

* WIP configurable scheduler

* WIP configurable scheduler

* add comment

* parse scheduler config

* force link schedulers

* WIP pipeable sender

* WIP CPO

* ADL isolation and dismantle headers

* type erase single thread context

* fix MSVC build

* CPO

* replace decay_t with remove_cvref_t

* structure adjustment

* structure adjustment

* apply CPOs & C API rework

* refine C API

* detector async C API

* adjust detector async C API

* # Conflicts:
#	csrc/apis/c/detector.cpp

* fix when_all for type erased senders

* support void return for Then

* async detector

* fix some CPOs

* minor

* WIP rework capture mechanism for type erased types

* minor fix

* fix MSVC build

* move expand.h to execution

* make `Expand` pipeable

* fix type erased

* un-templatize `_TypeErasedOperation`

* re-work C API

* remove async_detector C API

* fix pipeline

* add flatten & unflatten

* fix flatten & unflatten

* add aync OCR demo

* config executor for nodes & better executor API

* working async OCR example

* minor

* dynamic batch via scheduler

* dynamic batch on `Value`

* fix MSVC build

* type erase dynamic batch scheduler

* sender as Python Awaitable

* naming

* naming

* add docs

* minor

* merge tmp branch

* unify C APIs

* fix ocr

* unify APIs

* fix typo

* update async OCR demo

* add v3 API text recognizer

* fix v3 API

* fix lint

* add license info & reformat

* add demo async_ocr_v2

* revert files

* revert files

* resolve link issues

* fix scheduler linkage for shared libs

* fix license header

* add docs for `mmdeploy_executor_split`

* add missing `mmdeploy_executor_transfer_just` and `mmdeploy_executor_execute`

* make `TimedSingleThreadContext` header only

* fix lint

* simplify type-erased sender
2022-06-01 14:10:43 +08:00

288 lines
9.7 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "text_recognizer.h"
#include <numeric>
#include "apis/c/common_internal.h"
#include "apis/c/executor_internal.h"
#include "apis/c/model.h"
#include "apis/c/pipeline.h"
#include "archive/value_archive.h"
#include "codebase/mmocr/mmocr.h"
#include "core/device.h"
#include "core/mat.h"
#include "core/model.h"
#include "core/status_code.h"
#include "core/utils/formatter.h"
#include "core/value.h"
using namespace mmdeploy;
namespace {
const Value& config_template() {
// clang-format off
static Value v {
{
"pipeline", {
{
"tasks", {
{
{"name", "warp"},
{"type", "Task"},
{"module", "WarpBoxes"},
{"input", {"img", "dets"}},
{"output", {"patches"}}
},
{
{"name", "flatten"},
{"type", "Flatten"},
{"input", {"patches"}},
{"output", {"patch_flat", "patch_index"}},
},
{
{"name", "recog"},
{"type", "Inference"},
{"params", {{"model", "TBD"},{"batch_size", 1}}},
{"input", {"patch_flat"}},
{"output", {"texts"}}
},
{
{"name", "unflatten"},
{"type", "Unflatten"},
{"input", {"texts", "patch_index"}},
{"output", {"text_unflat"}},
}
}
},
{"input", {"img", "dets"}},
{"output", {"text_unflat"}}
}
}
};
// clang-format on
return v;
}
int mmdeploy_text_recognizer_create_impl(mm_model_t model, const char* device_name, int device_id,
mmdeploy_exec_info_t exec_info, mm_handle_t* handle) {
auto config = config_template();
config["pipeline"]["tasks"][2]["params"]["model"] = *static_cast<Model*>(model);
return mmdeploy_pipeline_create(Cast(&config), device_name, device_id, exec_info, handle);
}
} // namespace
int mmdeploy_text_recognizer_create(mm_model_t model, const char* device_name, int device_id,
mm_handle_t* handle) {
return mmdeploy_text_recognizer_create_impl(model, device_name, device_id, nullptr, handle);
}
int mmdeploy_text_recognizer_create_v2(mm_model_t model, const char* device_name, int device_id,
mmdeploy_exec_info_t exec_info, mm_handle_t* handle) {
return mmdeploy_text_recognizer_create_impl(model, device_name, device_id, exec_info, handle);
}
int mmdeploy_text_recognizer_create_by_path(const char* model_path, const char* device_name,
int device_id, mm_handle_t* handle) {
mm_model_t model{};
if (auto ec = mmdeploy_model_create_by_path(model_path, &model)) {
return ec;
}
auto ec = mmdeploy_text_recognizer_create_impl(model, device_name, device_id, nullptr, handle);
mmdeploy_model_destroy(model);
return ec;
}
int mmdeploy_text_recognizer_apply(mm_handle_t handle, const mm_mat_t* images, int count,
mm_text_recognize_t** results) {
return mmdeploy_text_recognizer_apply_bbox(handle, images, count, nullptr, nullptr, results);
}
int mmdeploy_text_recognizer_create_input(const mm_mat_t* images, int image_count,
const mm_text_detect_t* bboxes, const int* bbox_count,
mmdeploy_value_t* output) {
if (image_count && images == nullptr) {
return MM_E_INVALID_ARG;
}
try {
Value::Array input_images;
Value::Array input_bboxes;
auto _bboxes = bboxes;
auto result_count = 0;
// mapping from image index to result index, -1 represents invalid image with no bboxes
// supplied.
std::vector<int> result_index(image_count, -1);
for (int i = 0; i < image_count; ++i) {
if (bboxes && bbox_count) {
if (bbox_count[i] == 0) {
// skip images with no bounding boxes (push nothing)
continue;
}
Value boxes(Value::kArray);
for (int j = 0; j < bbox_count[i]; ++j) {
Value box;
for (const auto& p : _bboxes[j].bbox) {
box.push_back(p.x);
box.push_back(p.y);
}
boxes.push_back(std::move(box));
}
_bboxes += bbox_count[i];
result_count += bbox_count[i];
input_bboxes.push_back({{"boxes", boxes}});
} else {
// bboxes or bbox_count not supplied, use whole image
result_count += 1;
input_bboxes.push_back(Value::kNull);
}
result_index[i] = static_cast<int>(input_images.size());
mmdeploy::Mat _mat{images[i].height, images[i].width, PixelFormat(images[i].format),
DataType(images[i].type), images[i].data, Device{"cpu"}};
input_images.push_back({{"ori_img", _mat}});
}
std::vector<std::vector<mmocr::TextRecognizerOutput>> recognizer_outputs;
Value input{std::move(input_images), std::move(input_bboxes)};
*output = Take(std::move(input));
return MM_SUCCESS;
} catch (const std::exception& e) {
MMDEPLOY_ERROR("exception caught: {}", e.what());
} catch (...) {
MMDEPLOY_ERROR("unknown exception caught");
}
return MM_E_FAIL;
}
int mmdeploy_text_recognizer_apply_bbox(mm_handle_t handle, const mm_mat_t* mats, int mat_count,
const mm_text_detect_t* bboxes, const int* bbox_count,
mm_text_recognize_t** results) {
wrapped<mmdeploy_value_t> input;
if (auto ec =
mmdeploy_text_recognizer_create_input(mats, mat_count, bboxes, bbox_count, input.ptr())) {
return ec;
}
wrapped<mmdeploy_value_t> output;
if (auto ec = mmdeploy_text_recognizer_apply_v2(handle, input, output.ptr())) {
return ec;
}
if (auto ec = mmdeploy_text_recognizer_get_result(output, results)) {
return ec;
}
return MM_SUCCESS;
}
int mmdeploy_text_recognizer_apply_v2(mm_handle_t handle, mmdeploy_value_t input,
mmdeploy_value_t* output) {
return mmdeploy_pipeline_apply(handle, input, output);
}
int mmdeploy_text_recognizer_apply_async(mm_handle_t handle, mmdeploy_sender_t input,
mmdeploy_sender_t* output) {
return mmdeploy_pipeline_apply_async(handle, input, output);
}
MMDEPLOY_API int mmdeploy_text_recognizer_get_result(mmdeploy_value_t output,
mm_text_recognize_t** results) {
if (!output || !results) {
return MM_E_INVALID_ARG;
}
try {
std::vector<std::vector<mmocr::TextRecognizerOutput>> recognizer_outputs;
from_value(Cast(output)->front(), recognizer_outputs);
size_t image_count = recognizer_outputs.size();
size_t result_count = 0;
for (const auto& img_outputs : recognizer_outputs) {
result_count += img_outputs.size();
}
auto deleter = [&](mm_text_recognize_t* p) {
mmdeploy_text_recognizer_release_result(p, static_cast<int>(result_count));
};
std::unique_ptr<mm_text_recognize_t[], decltype(deleter)> _results(
new mm_text_recognize_t[result_count]{}, deleter);
size_t result_idx = 0;
for (const auto& img_result : recognizer_outputs) {
for (const auto& box_result : img_result) {
auto& res = _results[result_idx++];
auto& score = box_result.score;
res.length = static_cast<int>(score.size());
res.score = new float[score.size()];
std::copy_n(score.data(), score.size(), res.score);
auto text = box_result.text;
res.text = new char[text.length() + 1];
std::copy_n(text.data(), text.length() + 1, res.text);
}
}
*results = _results.release();
} catch (const std::exception& e) {
MMDEPLOY_ERROR("exception caught: {}", e.what());
} catch (...) {
MMDEPLOY_ERROR("unknown exception caught");
}
return MM_SUCCESS;
}
void mmdeploy_text_recognizer_release_result(mm_text_recognize_t* results, int count) {
for (int i = 0; i < count; ++i) {
delete[] results[i].score;
delete[] results[i].text;
}
delete[] results;
}
void mmdeploy_text_recognizer_destroy(mm_handle_t handle) { mmdeploy_pipeline_destroy(handle); }
int mmdeploy_text_recognizer_apply_async_v3(mm_handle_t handle, const mm_mat_t* imgs, int img_count,
const mm_text_detect_t* bboxes, const int* bbox_count,
mmdeploy_sender_t* output) {
wrapped<mmdeploy_value_t> input_val;
if (auto ec = mmdeploy_text_recognizer_create_input(imgs, img_count, bboxes, bbox_count,
input_val.ptr())) {
return ec;
}
mmdeploy_sender_t input_sndr = mmdeploy_executor_just(input_val);
if (auto ec = mmdeploy_text_recognizer_apply_async(handle, input_sndr, output)) {
return ec;
}
return MM_SUCCESS;
}
int mmdeploy_text_recognizer_continue_async(mmdeploy_sender_t input,
mmdeploy_text_recognizer_continue_t cont, void* context,
mmdeploy_sender_t* output) {
auto sender = Guard([&] {
return Take(
LetValue(Take(input), [fn = cont, context](Value& value) -> TypeErasedSender<Value> {
mm_text_recognize_t* results{};
if (auto ec = mmdeploy_text_recognizer_get_result(Cast(&value), &results)) {
return Just(Value());
}
value = nullptr;
mmdeploy_sender_t output{};
if (auto ec = fn(results, context, &output); ec || !output) {
return Just(Value());
}
return Take(output);
}));
});
if (sender) {
*output = sender;
return MM_SUCCESS;
}
return MM_E_FAIL;
}