mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* executor prototype * add split/when_all * fix GCC build * WIP let_value * fix let_value * WIP ensure_started * ensure_started & start_detached * fix let_value + when_all combo on MSVC 142 * fix static thread pool * generic just, then, let_value, sync_wait * minor * generic split and when_all * fully generic sender adapters * when_all: workaround for GCC7 * support legacy spdlog * fix memleak * bulk * static detector * fix bulk & first pipeline * bulk for static thread pools * fix on MSVC * WIP async batch submission * WIP collation * async batch * fix detector * fix async detector * fix * fix * debug * fix cuda allocator * WIP type erased executor * better type erasure * simplify C API impl * Expand & type erase TC * deduction guide for type erased senders * fix GCC build * when_all for arrays of Value senders * WIP pipeline v2 * WIP pipeline parser * WIP timed batch operation * add registry * experiment * fix pipeline * naming * fix mem-leak * fix deferred batch operation * WIP * WIP configurable scheduler * WIP configurable scheduler * add comment * parse scheduler config * force link schedulers * WIP pipeable sender * WIP CPO * ADL isolation and dismantle headers * type erase single thread context * fix MSVC build * CPO * replace decay_t with remove_cvref_t * structure adjustment * structure adjustment * apply CPOs & C API rework * refine C API * detector async C API * adjust detector async C API * # Conflicts: # csrc/apis/c/detector.cpp * fix when_all for type erased senders * support void return for Then * async detector * fix some CPOs * minor * WIP rework capture mechanism for type erased types * minor fix * fix MSVC build * move expand.h to execution * make `Expand` pipeable * fix type erased * un-templatize `_TypeErasedOperation` * re-work C API * remove async_detector C API * fix pipeline * add flatten & unflatten * fix flatten & unflatten * add aync OCR demo * config executor for nodes & better executor API * working async OCR example * minor * dynamic batch via scheduler * dynamic batch on `Value` * fix MSVC build * type erase dynamic batch scheduler * sender as Python Awaitable * naming * naming * add docs * minor * merge tmp branch * unify C APIs * fix ocr * unify APIs * fix typo * update async OCR demo * add v3 API text recognizer * fix v3 API * fix lint * add license info & reformat * add demo async_ocr_v2 * revert files * revert files * resolve link issues * fix scheduler linkage for shared libs * fix license header * add docs for `mmdeploy_executor_split` * add missing `mmdeploy_executor_transfer_just` and `mmdeploy_executor_execute` * make `TimedSingleThreadContext` header only * fix lint * simplify type-erased sender
142 lines
4.7 KiB
C++
142 lines
4.7 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include "resize.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include "archive/json_archive.h"
|
|
#include "core/tensor.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace mmdeploy {
|
|
|
|
ResizeImpl::ResizeImpl(const Value& args) : TransformImpl(args) {
|
|
arg_.keep_ratio = args.value<bool>("keep_ratio", false);
|
|
if (args.contains("size")) {
|
|
if (args["size"].is_number_integer()) {
|
|
auto size = args["size"].get<int>();
|
|
arg_.img_scale = {size, size};
|
|
} else if (args["size"].is_array()) {
|
|
if (args["size"].size() != 2) {
|
|
MMDEPLOY_ERROR("'size' expects an array of size 2, but got {}", args["size"].size());
|
|
throw std::length_error("'size' expects an array of size 2");
|
|
}
|
|
auto height = args["size"][0].get<int>();
|
|
auto width = args["size"][1].get<int>();
|
|
arg_.img_scale = {height, width};
|
|
} else {
|
|
MMDEPLOY_ERROR("'size' is expected to be an integer or and array of size 2");
|
|
throw std::domain_error("'size' is expected to be an integer or and array of size 2");
|
|
}
|
|
}
|
|
arg_.interpolation = args.value<string>("interpolation", "bilinear");
|
|
|
|
vector<string> interpolations{"nearest", "bilinear", "bicubic", "area", "lanczos"};
|
|
if (std::find(interpolations.begin(), interpolations.end(), arg_.interpolation) ==
|
|
interpolations.end()) {
|
|
MMDEPLOY_ERROR("'{}' interpolation is not supported", arg_.interpolation);
|
|
throw std::invalid_argument("unexpected interpolation");
|
|
}
|
|
}
|
|
|
|
Result<Value> ResizeImpl::Process(const Value& input) {
|
|
MMDEPLOY_DEBUG("input: {}", to_json(input).dump(2));
|
|
Value output = input;
|
|
auto img_fields = GetImageFields(input);
|
|
|
|
for (auto& key : img_fields) {
|
|
Tensor src_img = input[key].get<Tensor>();
|
|
auto desc = src_img.desc();
|
|
assert(desc.shape.size() == 4);
|
|
|
|
int h = desc.shape[1];
|
|
int w = desc.shape[2];
|
|
int dst_h = 0;
|
|
int dst_w = 0;
|
|
float scale_factor = 0.f;
|
|
|
|
if (input.contains("scale")) {
|
|
assert(input["scale"].is_array() && input["scale"].size() == 2);
|
|
dst_h = input["scale"][0].get<int>();
|
|
dst_w = input["scale"][1].get<int>();
|
|
} else if (input.contains("scale_factor")) {
|
|
assert(input["scale_factor"].is_number());
|
|
scale_factor = input["scale_factor"].get<float>();
|
|
dst_h = int(h * scale_factor + 0.5);
|
|
dst_w = int(w * scale_factor + 0.5);
|
|
} else if (!arg_.img_scale.empty()) {
|
|
MMDEPLOY_DEBUG(
|
|
"neither 'scale' or 'scale_factor' is provided in input value. "
|
|
"'img_scale' will be used");
|
|
if (-1 == arg_.img_scale[1]) {
|
|
if (w < h) {
|
|
dst_w = arg_.img_scale[0];
|
|
dst_h = dst_w * h / w;
|
|
} else {
|
|
dst_h = arg_.img_scale[0];
|
|
dst_w = dst_h * w / h;
|
|
}
|
|
} else {
|
|
dst_h = arg_.img_scale[0];
|
|
dst_w = arg_.img_scale[1];
|
|
}
|
|
} else {
|
|
MMDEPLOY_ERROR("no resize related parameter is provided");
|
|
return Status(eInvalidArgument);
|
|
}
|
|
if (arg_.keep_ratio) {
|
|
int max_long_edge = dst_w;
|
|
int max_short_edge = dst_h;
|
|
if (max_long_edge < max_short_edge) {
|
|
std::swap(max_long_edge, max_short_edge);
|
|
}
|
|
scale_factor = std::min(max_long_edge * 1.0 / (1.0 * std::max(h, w)),
|
|
max_short_edge * 1.0 / (1.0 * std::min(h, w)));
|
|
dst_w = int(w * scale_factor + 0.5);
|
|
dst_h = int(h * scale_factor + 0.5);
|
|
}
|
|
Tensor dst_img;
|
|
if (dst_h != h || dst_w != w) {
|
|
OUTCOME_TRY(dst_img, ResizeImage(src_img, dst_h, dst_w));
|
|
} else {
|
|
dst_img = src_img;
|
|
}
|
|
auto w_scale = dst_w * 1.0 / w;
|
|
auto h_scale = dst_h * 1.0 / h;
|
|
output["scale_factor"] = {w_scale, h_scale, w_scale, h_scale};
|
|
output["img_shape"] = {1, dst_h, dst_w, desc.shape[3]};
|
|
output["keep_ratio"] = arg_.keep_ratio;
|
|
|
|
SetTransformData(output, key, std::move(dst_img));
|
|
}
|
|
|
|
MMDEPLOY_DEBUG("output: {}", to_json(output).dump(2));
|
|
return output;
|
|
}
|
|
|
|
Resize::Resize(const Value& args, int version) : Transform(args) {
|
|
auto impl_creator = Registry<ResizeImpl>::Get().GetCreator(specified_platform_, version);
|
|
if (nullptr == impl_creator) {
|
|
MMDEPLOY_ERROR("'Resize' is not supported on '{}' platform", specified_platform_);
|
|
throw std::domain_error("'Resize' is not supported on specified platform");
|
|
}
|
|
impl_ = impl_creator->Create(args);
|
|
}
|
|
|
|
class ResizeCreator : public Creator<Transform> {
|
|
public:
|
|
const char* GetName() const override { return "Resize"; }
|
|
int GetVersion() const override { return version_; }
|
|
ReturnType Create(const Value& args) override { return make_unique<Resize>(args, version_); }
|
|
|
|
private:
|
|
int version_{1};
|
|
};
|
|
|
|
REGISTER_MODULE(Transform, ResizeCreator);
|
|
|
|
MMDEPLOY_DEFINE_REGISTRY(ResizeImpl);
|
|
|
|
} // namespace mmdeploy
|