37 lines
2.9 KiB
Markdown
37 lines
2.9 KiB
Markdown
# 量化测试结果
|
||
|
||
目前 mmdeploy 支持 ncnn 量化
|
||
|
||
## ncnn 量化
|
||
|
||
### 分类任务
|
||
|
||
| model | dataset | fp32 top-1 (%) | int8 top-1 (%) |
|
||
| :--------------------------------------------------------------------------------------------------------------------------: | :---------: | :------------: | :------------: |
|
||
| [ResNet-18](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb16_cifar10.py) | Cifar10 | 94.82 | 94.83 |
|
||
| [ResNeXt-32x4d-50](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py) | ImageNet-1k | 77.90 | 78.20\* |
|
||
| [MobileNet V2](https://github.com/open-mmlab/mmclassification/blob/master/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py) | ImageNet-1k | 71.86 | 71.43\* |
|
||
| [HRNet-W18\*](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py) | ImageNet-1k | 76.75 | 76.25\* |
|
||
|
||
备注:
|
||
|
||
- 因为 imagenet-1k 数据量很大、ncnn 未正式发布 Vulkan int8 版本,考虑到 CPU 运行时间,仅用部分测试集(4000/50000)
|
||
- 量化后精度会有差异,分类模型涨点 1% 以内是正常情况
|
||
|
||
### OCR 检测任务
|
||
|
||
| model | dataset | fp32 hmean | int8 hmean |
|
||
| :--------------------------------------------------------------------------------------------------------------------------: | :-------: | :--------: | :------------: |
|
||
| [PANet](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/panet/panet_r18_fpem_ffm_600e_icdar2015.py) | ICDAR2015 | 0.795 | 0.792 @thr=0.9 |
|
||
| [TextSnake](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/textsnake/textsnake_r50_fpn_unet_1200e_ctw1500.py) | CTW1500 | 0.817 | 0.818 |
|
||
|
||
备注:[mmocr](https://github.com/open-mmlab/mmocr) 使用 `shapely` 计算 IoU,实现方法会导致轻微的精度差异
|
||
|
||
### 姿态检测任务
|
||
|
||
| model | dataset | fp32 AP | int8 AP |
|
||
| :----------------------------------------------------------------------------------------------------------------------------------------------: | :------: | :-----: | :-----: |
|
||
| [Hourglass](https://github.com/open-mmlab/mmpose/blob/master/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hourglass52_coco_256x256.py) | COCO2017 | 0.717 | 0.713 |
|
||
|
||
备注:测试转换后的模型精度时,对于 mmpose 模型,在模型配置文件中 `flip_test` 需设置为 `False`。
|