tpoisonooo 331292a992
Feature: support mmdet3d dev-1.x 1.1.0rc1 (#1225)
* feat(mmdet3d): test pointpillars and centerpoint on ort, openvino and trt passed

* fix(centerpoint): mvx_two_stage input error

* fix(review): remove mode decorator

* fix(mmdet3d): review advices

* fix(regression): update mmdet3d.yml and test ort/openvino passed

* unittest(mmdet3d): fix

* fix(unittest): fix

* fix(mmdet3d): unittest

* fix(mmdet3d): unittest

* fix(CI): remove mmcv.Config

* fix(mmdet3d): unittest

* fix(mmdet3d): support torch1.12

* fix(CI): use bigger point cloud file

* improvement(mmdet3d): align backend outputs with torch

* fix(mmdet3d): remove useless

* style(mmdet3d): format code

* style(mmdet3d): remove useless

* fix(mmdet3d): sync vis_task

* unittest(mmdet3d): add test

* docs(mmdet3d): add docstring

* unittest(ci): add unittest data

* fix(mmdet3d): review advices

* feat(mmdet3d): convert fail

* style(mmdet3d): docstring

* style(mmdet3d): docstring
2022-11-04 20:54:01 +08:00

67 lines
2.0 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
# For nuScenes dataset, we usually evaluate the model at the end of training.
# Since the models are trained by 24 epochs by default, we set evaluation
# interval to be 20. Please change the interval accordingly if you do not
# use a default schedule.
# optimizer
lr = 1e-4
# This schedule is mainly used by models on nuScenes dataset
# max_norm=10 is better for SECOND
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=lr, weight_decay=0.01),
clip_grad=dict(max_norm=35, norm_type=2))
# learning rate
param_scheduler = [
# learning rate scheduler
# During the first 8 epochs, learning rate increases from 0 to lr * 10
# during the next 12 epochs, learning rate decreases from lr * 10 to
# lr * 1e-4
dict(
type='CosineAnnealingLR',
T_max=8,
eta_min=lr * 10,
begin=0,
end=8,
by_epoch=True,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=12,
eta_min=lr * 1e-4,
begin=8,
end=20,
by_epoch=True,
convert_to_iter_based=True),
# momentum scheduler
# During the first 8 epochs, momentum increases from 0 to 0.85 / 0.95
# during the next 12 epochs, momentum increases from 0.85 / 0.95 to 1
dict(
type='CosineAnnealingMomentum',
T_max=8,
eta_min=0.85 / 0.95,
begin=0,
end=8,
by_epoch=True,
convert_to_iter_based=True),
dict(
type='CosineAnnealingMomentum',
T_max=12,
eta_min=1,
begin=8,
end=20,
by_epoch=True,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(by_epoch=True, max_epochs=20, val_interval=20)
val_cfg = dict()
test_cfg = dict()
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (4 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=32)