tpoisonooo 331292a992
Feature: support mmdet3d dev-1.x 1.1.0rc1 (#1225)
* feat(mmdet3d): test pointpillars and centerpoint on ort, openvino and trt passed

* fix(centerpoint): mvx_two_stage input error

* fix(review): remove mode decorator

* fix(mmdet3d): review advices

* fix(regression): update mmdet3d.yml and test ort/openvino passed

* unittest(mmdet3d): fix

* fix(unittest): fix

* fix(mmdet3d): unittest

* fix(mmdet3d): unittest

* fix(CI): remove mmcv.Config

* fix(mmdet3d): unittest

* fix(mmdet3d): support torch1.12

* fix(CI): use bigger point cloud file

* improvement(mmdet3d): align backend outputs with torch

* fix(mmdet3d): remove useless

* style(mmdet3d): format code

* style(mmdet3d): remove useless

* fix(mmdet3d): sync vis_task

* unittest(mmdet3d): add test

* docs(mmdet3d): add docstring

* unittest(ci): add unittest data

* fix(mmdet3d): review advices

* feat(mmdet3d): convert fail

* style(mmdet3d): docstring

* style(mmdet3d): docstring
2022-11-04 20:54:01 +08:00

134 lines
4.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-50, -50, -5, 50, 50, 3]
# For nuScenes we usually do 10-class detection
class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
metainfo = dict(CLASSES=class_names)
dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'
# Input modality for nuScenes dataset, this is consistent with the submission
# format which requires the information in input_modality.
input_modality = dict(use_lidar=True, use_camera=False)
data_prefix = dict(pts='samples/LIDAR_TOP', img='', sweeps='sweeps/LIDAR_TOP')
file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# file_client_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/nuscenes/': 's3://nuscenes/nuscenes/',
# 'data/nuscenes/': 's3://nuscenes/nuscenes/'
# }))
train_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5),
dict(type='LoadPointsFromMultiSweeps', sweeps_num=10),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.3925, 0.3925],
scale_ratio_range=[0.95, 1.05],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='PointShuffle'),
dict(
type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5),
dict(type='LoadPointsFromMultiSweeps', sweeps_num=10, test_mode=True),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range)
]),
dict(type='Pack3DDetInputs', keys=['points'])
]
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5),
dict(type='LoadPointsFromMultiSweeps', sweeps_num=10, test_mode=True),
dict(type='Pack3DDetInputs', keys=['points'])
]
train_dataloader = dict(
batch_size=4,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='nuscenes_infos_train.pkl',
pipeline=train_pipeline,
metainfo=metainfo,
modality=input_modality,
test_mode=False,
data_prefix=data_prefix,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='LiDAR'))
test_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='nuscenes_infos_val.pkl',
pipeline=test_pipeline,
metainfo=metainfo,
modality=input_modality,
data_prefix=data_prefix,
test_mode=True,
box_type_3d='LiDAR'))
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='nuscenes_infos_val.pkl',
pipeline=test_pipeline,
metainfo=metainfo,
modality=input_modality,
test_mode=True,
data_prefix=data_prefix,
box_type_3d='LiDAR'))
val_evaluator = dict(
type='NuScenesMetric',
data_root=data_root,
ann_file=data_root + 'nuscenes_infos_val.pkl',
metric='bbox')
test_evaluator = val_evaluator
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')