mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
37 lines
1.2 KiB
C++
37 lines
1.2 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include <fstream>
|
|
|
|
// clang-format off
|
|
#include "catch.hpp"
|
|
// clang-format on
|
|
|
|
#include "apis/c/classifier.h"
|
|
#include "apis/c/model.h"
|
|
#include "core/logger.h"
|
|
#include "opencv2/opencv.hpp"
|
|
|
|
using namespace std;
|
|
|
|
TEST_CASE("test classifier's c api", "[classifier]") {
|
|
mm_handle_t handle{nullptr};
|
|
auto model_path = "../../config/classifier/resnet50_t4-cuda11.1-trt7.2-fp32";
|
|
// auto ret = mmdeploy_classifier_create_by_path(model_path, "cuda", 0, &handle);
|
|
mm_model_t model{};
|
|
auto ret = mmdeploy_model_create_by_path(model_path, &model);
|
|
REQUIRE(ret == MM_SUCCESS);
|
|
ret = mmdeploy_classifier_create(model, "cuda", 0, &handle);
|
|
REQUIRE(ret == MM_SUCCESS);
|
|
|
|
cv::Mat mat = cv::imread("../../tests/data/images/dogs.jpg");
|
|
vector<mm_mat_t> mats{{mat.data, mat.rows, mat.cols, mat.channels(), MM_BGR, MM_INT8}};
|
|
mm_class_t* results{nullptr};
|
|
int* result_count{nullptr};
|
|
ret = mmdeploy_classifier_apply(handle, mats.data(), (int)mats.size(), &results, &result_count);
|
|
REQUIRE(ret == MM_SUCCESS);
|
|
INFO("label: {}, score: {}", results->label_id, results->score);
|
|
|
|
mmdeploy_classifier_release_result(results, result_count, (int)mats.size());
|
|
mmdeploy_classifier_destroy(handle);
|
|
}
|