mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
167 lines
4.1 KiB
C++
167 lines
4.1 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
// clang-format off
|
|
#include "catch.hpp"
|
|
// clang-format on
|
|
|
|
#include <algorithm>
|
|
#include <fstream>
|
|
#include <numeric>
|
|
|
|
#include "archive/json_archive.h"
|
|
#include "core/graph.h"
|
|
#include "core/mat.h"
|
|
#include "core/operator.h"
|
|
#include "core/registry.h"
|
|
#include "core/tensor.h"
|
|
|
|
const auto json_str = R"({
|
|
"pipeline": {
|
|
"input": ["input", "id"],
|
|
"output": ["output"],
|
|
"tasks": [
|
|
{
|
|
"name": "load",
|
|
"type": "Task",
|
|
"module": "LoadImage",
|
|
"input": ["input"],
|
|
"output": ["img"],
|
|
"is_thread_safe": true
|
|
},
|
|
{
|
|
"name": "cls",
|
|
"type": "Inference",
|
|
"params": {
|
|
"model": "../../resnet50",
|
|
"batch_size": 1
|
|
},
|
|
"input": ["img"],
|
|
"output": ["prob"]
|
|
},
|
|
{
|
|
"name": "accuracy",
|
|
"type": "Task",
|
|
"module": "Accuracy",
|
|
"input": ["prob", "id"],
|
|
"output": ["output"],
|
|
"gt": "/data/imagenet_val_gt.txt"
|
|
}
|
|
]
|
|
}
|
|
}
|
|
)";
|
|
|
|
namespace test {
|
|
|
|
using namespace mmdeploy;
|
|
|
|
class AccuracyModule : public mmdeploy::Module {
|
|
public:
|
|
explicit AccuracyModule(const Value& config) {
|
|
stream_ = config["context"]["stream"].get<Stream>();
|
|
auto path = config["gt"].get<std::string>();
|
|
std::ifstream ifs(path);
|
|
if (!ifs.is_open()) {
|
|
throw_exception(eFileNotExist);
|
|
}
|
|
std::string _;
|
|
for (int clsid = -1; ifs >> _ >> clsid;) {
|
|
label_.push_back(clsid);
|
|
}
|
|
}
|
|
Result<Value> Process(const Value& input) override {
|
|
// WARN("{}", to_json(input).dump(2));
|
|
std::vector<float> probs(1000);
|
|
auto tensor = input[0]["probs"].get<Tensor>();
|
|
auto image_id = input[1].get<int>();
|
|
// auto stream = Stream::GetDefault(tensor.desc().device);
|
|
OUTCOME_TRY(tensor.CopyTo(probs.data(), stream_));
|
|
OUTCOME_TRY(stream_.Wait());
|
|
std::vector<int> idx(probs.size());
|
|
iota(begin(idx), end(idx), 0);
|
|
partial_sort(begin(idx), begin(idx) + 5, end(idx),
|
|
[&](int i, int j) { return probs[i] > probs[j]; });
|
|
// ERROR("top-1: {}", idx[0]);
|
|
auto gt = label_[image_id];
|
|
if (idx[0] == gt) {
|
|
++top1_;
|
|
}
|
|
if (std::find(begin(idx), begin(idx) + 5, gt) != begin(idx) + 5) {
|
|
++top5_;
|
|
}
|
|
++cnt_;
|
|
auto fcnt = static_cast<float>(cnt_);
|
|
if ((image_id + 1) % 1000 == 0) {
|
|
ERROR("index: {}, top1: {}, top5: {}", image_id, top1_ / fcnt, top5_ / fcnt);
|
|
}
|
|
return Value{ValueType::kObject};
|
|
}
|
|
|
|
private:
|
|
int cnt_{0};
|
|
int top1_{0};
|
|
int top5_{0};
|
|
Stream stream_;
|
|
std::vector<int> label_;
|
|
};
|
|
|
|
class AccuracyModuleCreator : public Creator<Module> {
|
|
public:
|
|
const char* GetName() const override { return "Accuracy"; }
|
|
int GetVersion() const override { return 0; }
|
|
std::unique_ptr<Module> Create(const Value& value) override {
|
|
return std::make_unique<AccuracyModule>(value);
|
|
}
|
|
};
|
|
|
|
REGISTER_MODULE(Module, AccuracyModuleCreator);
|
|
|
|
} // namespace test
|
|
|
|
TEST_CASE("test mmcls imagenet", "[imagenet]") {
|
|
|
|
using namespace mmdeploy;
|
|
auto json = nlohmann::json::parse(json_str);
|
|
auto value = mmdeploy::from_json<mmdeploy::Value>(json);
|
|
|
|
// Device device{"cuda", 0};
|
|
Device device("cpu");
|
|
auto stream = Stream::GetDefault(device);
|
|
value["context"]["device"] = device;
|
|
value["context"]["stream"] = stream;
|
|
|
|
auto pipeline = Registry<graph::Node>::Get().GetCreator("Pipeline")->Create(value);
|
|
REQUIRE(pipeline);
|
|
|
|
graph::TaskGraph graph;
|
|
pipeline->Build(graph);
|
|
|
|
// const auto img_list = "../tests/data/config/imagenet.list";
|
|
const auto img_list = "/data/imagenet_val.txt";
|
|
|
|
std::ifstream ifs(img_list);
|
|
REQUIRE(ifs.is_open());
|
|
|
|
int image_id = 0;
|
|
const auto batch_size = 64;
|
|
bool done{};
|
|
while (!done) {
|
|
// if (image_id > 5000) break;
|
|
Value batch = Value::kArray;
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
std::string path;
|
|
if (ifs >> path) {
|
|
batch.push_back({{{"filename", path}}, image_id++});
|
|
} else {
|
|
done = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!batch.empty()) {
|
|
batch = graph::DistribAA(batch).value();
|
|
graph.Run(batch).value();
|
|
}
|
|
break;
|
|
}
|
|
}
|