mmdeploy/tests/test_csrc/graph/test_imagenet.cpp
lvhan028 36124f6205
Merge sdk (#251)
* check in cmake

* move backend_ops to csrc/backend_ops

* check in preprocess, model, some codebase and their c-apis

* check in CMakeLists.txt

* check in parts of test_csrc

* commit everything else

* add readme

* update core's BUILD_INTERFACE directory

* skip codespell on third_party

* update trt_net and ort_net's CMakeLists

* ignore clion's build directory

* check in pybind11

* add onnx.proto. Remove MMDeploy's dependency on ncnn's source code

* export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON

* remove useless message

* target include directory is wrong

* change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net

* skip install directory

* update project's cmake

* remove useless code

* set CMAKE_BUILD_TYPE to Release by force if it isn't set by user

* update custom ops CMakeLists

* pass object target's source lists

* fix lint end-of-file

* fix lint: trailing whitespace

* fix codespell hook

* remove bicubic_interpolate to csrc/backend_ops/

* set MMDEPLOY_BUILD_SDK OFF

* change custom ops build command

* add spdlog installation command

* update docs on how to checkout pybind11

* move bicubic_interpolate to backend_ops/tensorrt directory

* remove useless code

* correct cmake

* fix typo

* fix typo

* fix install directory

* correct sdk's readme

* set cub dir when cuda version < 11.0

* change directory where clang-format will apply to

* fix build command

* add .clang-format

* change clang-format style from google to file

* reformat csrc/backend_ops

* format sdk's code

* turn off clang-format for some files

* add -Xcompiler=-fno-gnu-unique

* fix trt topk initialize

* check in config for sdk demo

* update cmake script and csrc's readme

* correct config's path

* add cuda include directory, otherwise compile failed in case of tensorrt8.2

* clang-format onnx2ncnn.cpp

Co-authored-by: zhangli <lzhang329@gmail.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00

167 lines
4.1 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
// clang-format off
#include "catch.hpp"
// clang-format on
#include <algorithm>
#include <fstream>
#include <numeric>
#include "archive/json_archive.h"
#include "core/graph.h"
#include "core/mat.h"
#include "core/operator.h"
#include "core/registry.h"
#include "core/tensor.h"
const auto json_str = R"({
"pipeline": {
"input": ["input", "id"],
"output": ["output"],
"tasks": [
{
"name": "load",
"type": "Task",
"module": "LoadImage",
"input": ["input"],
"output": ["img"],
"is_thread_safe": true
},
{
"name": "cls",
"type": "Inference",
"params": {
"model": "../../resnet50",
"batch_size": 1
},
"input": ["img"],
"output": ["prob"]
},
{
"name": "accuracy",
"type": "Task",
"module": "Accuracy",
"input": ["prob", "id"],
"output": ["output"],
"gt": "/data/imagenet_val_gt.txt"
}
]
}
}
)";
namespace test {
using namespace mmdeploy;
class AccuracyModule : public mmdeploy::Module {
public:
explicit AccuracyModule(const Value& config) {
stream_ = config["context"]["stream"].get<Stream>();
auto path = config["gt"].get<std::string>();
std::ifstream ifs(path);
if (!ifs.is_open()) {
throw_exception(eFileNotExist);
}
std::string _;
for (int clsid = -1; ifs >> _ >> clsid;) {
label_.push_back(clsid);
}
}
Result<Value> Process(const Value& input) override {
// WARN("{}", to_json(input).dump(2));
std::vector<float> probs(1000);
auto tensor = input[0]["probs"].get<Tensor>();
auto image_id = input[1].get<int>();
// auto stream = Stream::GetDefault(tensor.desc().device);
OUTCOME_TRY(tensor.CopyTo(probs.data(), stream_));
OUTCOME_TRY(stream_.Wait());
std::vector<int> idx(probs.size());
iota(begin(idx), end(idx), 0);
partial_sort(begin(idx), begin(idx) + 5, end(idx),
[&](int i, int j) { return probs[i] > probs[j]; });
// ERROR("top-1: {}", idx[0]);
auto gt = label_[image_id];
if (idx[0] == gt) {
++top1_;
}
if (std::find(begin(idx), begin(idx) + 5, gt) != begin(idx) + 5) {
++top5_;
}
++cnt_;
auto fcnt = static_cast<float>(cnt_);
if ((image_id + 1) % 1000 == 0) {
ERROR("index: {}, top1: {}, top5: {}", image_id, top1_ / fcnt, top5_ / fcnt);
}
return Value{ValueType::kObject};
}
private:
int cnt_{0};
int top1_{0};
int top5_{0};
Stream stream_;
std::vector<int> label_;
};
class AccuracyModuleCreator : public Creator<Module> {
public:
const char* GetName() const override { return "Accuracy"; }
int GetVersion() const override { return 0; }
std::unique_ptr<Module> Create(const Value& value) override {
return std::make_unique<AccuracyModule>(value);
}
};
REGISTER_MODULE(Module, AccuracyModuleCreator);
} // namespace test
TEST_CASE("test mmcls imagenet", "[imagenet]") {
using namespace mmdeploy;
auto json = nlohmann::json::parse(json_str);
auto value = mmdeploy::from_json<mmdeploy::Value>(json);
// Device device{"cuda", 0};
Device device("cpu");
auto stream = Stream::GetDefault(device);
value["context"]["device"] = device;
value["context"]["stream"] = stream;
auto pipeline = Registry<graph::Node>::Get().GetCreator("Pipeline")->Create(value);
REQUIRE(pipeline);
graph::TaskGraph graph;
pipeline->Build(graph);
// const auto img_list = "../tests/data/config/imagenet.list";
const auto img_list = "/data/imagenet_val.txt";
std::ifstream ifs(img_list);
REQUIRE(ifs.is_open());
int image_id = 0;
const auto batch_size = 64;
bool done{};
while (!done) {
// if (image_id > 5000) break;
Value batch = Value::kArray;
for (int i = 0; i < batch_size; ++i) {
std::string path;
if (ifs >> path) {
batch.push_back({{{"filename", path}}, image_id++});
} else {
done = true;
break;
}
}
if (!batch.empty()) {
batch = graph::DistribAA(batch).value();
graph.Run(batch).value();
}
break;
}
}