lvhan028 36124f6205
Merge sdk (#251)
* check in cmake

* move backend_ops to csrc/backend_ops

* check in preprocess, model, some codebase and their c-apis

* check in CMakeLists.txt

* check in parts of test_csrc

* commit everything else

* add readme

* update core's BUILD_INTERFACE directory

* skip codespell on third_party

* update trt_net and ort_net's CMakeLists

* ignore clion's build directory

* check in pybind11

* add onnx.proto. Remove MMDeploy's dependency on ncnn's source code

* export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON

* remove useless message

* target include directory is wrong

* change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net

* skip install directory

* update project's cmake

* remove useless code

* set CMAKE_BUILD_TYPE to Release by force if it isn't set by user

* update custom ops CMakeLists

* pass object target's source lists

* fix lint end-of-file

* fix lint: trailing whitespace

* fix codespell hook

* remove bicubic_interpolate to csrc/backend_ops/

* set MMDEPLOY_BUILD_SDK OFF

* change custom ops build command

* add spdlog installation command

* update docs on how to checkout pybind11

* move bicubic_interpolate to backend_ops/tensorrt directory

* remove useless code

* correct cmake

* fix typo

* fix typo

* fix install directory

* correct sdk's readme

* set cub dir when cuda version < 11.0

* change directory where clang-format will apply to

* fix build command

* add .clang-format

* change clang-format style from google to file

* reformat csrc/backend_ops

* format sdk's code

* turn off clang-format for some files

* add -Xcompiler=-fno-gnu-unique

* fix trt topk initialize

* check in config for sdk demo

* update cmake script and csrc's readme

* correct config's path

* add cuda include directory, otherwise compile failed in case of tensorrt8.2

* clang-format onnx2ncnn.cpp

Co-authored-by: zhangli <lzhang329@gmail.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00

179 lines
6.2 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "catch.hpp"
#include "core/mat.h"
#include "preprocess/cpu/opencv_utils.h"
#include "preprocess/transform/transform.h"
#include "preprocess/transform/transform_utils.h"
#include "test_utils.h"
using namespace mmdeploy;
using namespace std;
using namespace mmdeploy::test;
tuple<int, int, int, int> CenterCropArea(const cv::Mat& mat, int crop_height, int crop_width) {
auto img_height = mat.rows;
auto img_width = mat.cols;
auto y1 = max(0, int(round((img_height - crop_height) / 2.)));
auto x1 = max(0, int(round((img_width - crop_width) / 2.)));
auto y2 = min(img_height, y1 + crop_height) - 1;
auto x2 = min(img_width, x1 + crop_width) - 1;
return {y1, x1, y2, x2};
}
void TestCpuCenterCrop(const Value& cfg, const cv::Mat& mat, int crop_height, int crop_width) {
Device device{"cpu"};
Stream stream{device};
auto transform = CreateTransform(cfg, device, stream);
REQUIRE(transform != nullptr);
auto [top, left, bottom, right] = CenterCropArea(mat, crop_height, crop_width);
auto ref_mat = mmdeploy::cpu::Crop(mat, top, left, bottom, right);
auto res = transform->Process({{"img", cpu::CVMat2Tensor(mat)}});
REQUIRE(!res.has_error());
auto res_mat = mmdeploy::cpu::Tensor2CVMat(res.value()["img"].get<Tensor>());
REQUIRE(mmdeploy::cpu::Compare(ref_mat, res_mat));
REQUIRE(Shape(res.value(), "img_shape") ==
vector<int64_t>{1, ref_mat.rows, ref_mat.cols, ref_mat.channels()});
}
void TestCudaCenterCrop(const Value& cfg, const cv::Mat& mat, int crop_height, int crop_width) {
Device device{"cuda"};
Stream stream{device};
auto transform = CreateTransform(cfg, device, stream);
if (transform == nullptr) {
return;
}
auto [top, left, bottom, right] = CenterCropArea(mat, crop_height, crop_width);
auto ref_mat = mmdeploy::cpu::Crop(mat, top, left, bottom, right);
auto res = transform->Process({{"img", cpu::CVMat2Tensor(mat)}});
REQUIRE(!res.has_error());
auto res_tensor = res.value()["img"].get<Tensor>();
REQUIRE(res_tensor.device().is_device());
Device _device{"cpu"};
auto host_tensor = MakeAvailableOnDevice(res_tensor, _device, stream);
REQUIRE(stream.Wait());
auto res_mat = mmdeploy::cpu::Tensor2CVMat(host_tensor.value());
// cv::imwrite("ref.jpg",ref_mat);
// cv::imwrite("res.jpg", res_mat);
REQUIRE(mmdeploy::cpu::Compare(ref_mat, res_mat));
REQUIRE(Shape(res.value(), "img_shape") ==
vector<int64_t>{1, ref_mat.rows, ref_mat.cols, ref_mat.channels()});
}
TEST_CASE("test transform crop (cpu) process", "[crop]") {
std::string transform_type("CenterCrop");
const char* img_path = "../../tests/preprocess/data/imagenet_banner.jpeg";
cv::Mat bgr_mat = cv::imread(img_path, cv::IMREAD_COLOR);
cv::Mat gray_mat = cv::imread(img_path, cv::IMREAD_GRAYSCALE);
cv::Mat bgr_float_mat;
cv::Mat gray_float_mat;
bgr_mat.convertTo(bgr_float_mat, CV_32FC3);
gray_mat.convertTo(gray_float_mat, CV_32FC1);
vector<cv::Mat> mats{bgr_mat, gray_mat, bgr_float_mat, gray_float_mat};
SECTION("crop_size: int; small size") {
constexpr int crop_size = 224;
Value cfg{{"type", "CenterCrop"}, {"crop_size", crop_size}};
for (auto& mat : mats) {
TestCpuCenterCrop(cfg, mat, crop_size, crop_size);
}
}
SECTION("crop_size: int; oversize") {
constexpr int crop_size = 800;
Value cfg{{"type", "CenterCrop"}, {"crop_size", crop_size}};
for (auto& mat : mats) {
TestCpuCenterCrop(cfg, mat, crop_size, crop_size);
}
}
SECTION("crop_size: tuple") {
constexpr int crop_height = 224;
constexpr int crop_width = 224;
Value cfg{{"type", "CenterCrop"}, {"crop_size", {crop_height, crop_width}}};
for (auto& mat : mats) {
TestCpuCenterCrop(cfg, mat, crop_height, crop_width);
}
}
SECTION("crop_size: tuple;oversize in height") {
constexpr int crop_height = 640;
constexpr int crop_width = 224;
Value cfg{{"type", "CenterCrop"}, {"crop_size", {crop_height, crop_width}}};
for (auto& mat : mats) {
TestCpuCenterCrop(cfg, mat, crop_height, crop_width);
}
}
SECTION("crop_size: tuple;oversize in width") {
constexpr int crop_height = 224;
constexpr int crop_width = 800;
Value cfg{{"type", "CenterCrop"}, {"crop_size", {crop_height, crop_width}}};
for (auto& mat : mats) {
TestCpuCenterCrop(cfg, mat, crop_height, crop_width);
}
}
}
TEST_CASE("test transform crop (gpu) process", "[crop]") {
std::string transform_type("CenterCrop");
const char* img_path = "../../tests/preprocess/data/imagenet_banner.jpeg";
cv::Mat bgr_mat = cv::imread(img_path, cv::IMREAD_COLOR);
cv::Mat gray_mat = cv::imread(img_path, cv::IMREAD_GRAYSCALE);
cv::Mat bgr_float_mat;
cv::Mat gray_float_mat;
bgr_mat.convertTo(bgr_float_mat, CV_32FC3);
gray_mat.convertTo(gray_float_mat, CV_32FC1);
vector<cv::Mat> mats{bgr_mat, gray_mat, bgr_float_mat, gray_float_mat};
SECTION("crop_size: int; small size") {
constexpr int crop_size = 224;
Value cfg{{"type", "CenterCrop"}, {"crop_size", crop_size}};
for (auto& mat : mats) {
TestCudaCenterCrop(cfg, mat, crop_size, crop_size);
}
}
SECTION("crop_size: int; oversize") {
constexpr int crop_size = 800;
Value cfg{{"type", "CenterCrop"}, {"crop_size", crop_size}};
for (auto& mat : mats) {
TestCudaCenterCrop(cfg, mat, crop_size, crop_size);
}
}
SECTION("crop_size: tuple") {
constexpr int crop_height = 224;
constexpr int crop_width = 224;
Value cfg{{"type", "CenterCrop"}, {"crop_size", {crop_height, crop_width}}};
for (auto& mat : mats) {
TestCudaCenterCrop(cfg, mat, crop_height, crop_width);
}
}
SECTION("crop_size: tuple;oversize in height") {
constexpr int crop_height = 640;
constexpr int crop_width = 224;
Value cfg{{"type", "CenterCrop"}, {"crop_size", {crop_height, crop_width}}};
for (auto& mat : mats) {
TestCpuCenterCrop(cfg, mat, crop_height, crop_width);
}
}
SECTION("crop_size: tuple;oversize in width") {
constexpr int crop_height = 224;
constexpr int crop_width = 800;
Value cfg{{"type", "CenterCrop"}, {"crop_size", {crop_height, crop_width}}};
for (auto& mat : mats) {
TestCudaCenterCrop(cfg, mat, crop_height, crop_width);
}
}
}