lvhan028 36124f6205
Merge sdk (#251)
* check in cmake

* move backend_ops to csrc/backend_ops

* check in preprocess, model, some codebase and their c-apis

* check in CMakeLists.txt

* check in parts of test_csrc

* commit everything else

* add readme

* update core's BUILD_INTERFACE directory

* skip codespell on third_party

* update trt_net and ort_net's CMakeLists

* ignore clion's build directory

* check in pybind11

* add onnx.proto. Remove MMDeploy's dependency on ncnn's source code

* export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON

* remove useless message

* target include directory is wrong

* change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net

* skip install directory

* update project's cmake

* remove useless code

* set CMAKE_BUILD_TYPE to Release by force if it isn't set by user

* update custom ops CMakeLists

* pass object target's source lists

* fix lint end-of-file

* fix lint: trailing whitespace

* fix codespell hook

* remove bicubic_interpolate to csrc/backend_ops/

* set MMDEPLOY_BUILD_SDK OFF

* change custom ops build command

* add spdlog installation command

* update docs on how to checkout pybind11

* move bicubic_interpolate to backend_ops/tensorrt directory

* remove useless code

* correct cmake

* fix typo

* fix typo

* fix install directory

* correct sdk's readme

* set cub dir when cuda version < 11.0

* change directory where clang-format will apply to

* fix build command

* add .clang-format

* change clang-format style from google to file

* reformat csrc/backend_ops

* format sdk's code

* turn off clang-format for some files

* add -Xcompiler=-fno-gnu-unique

* fix trt topk initialize

* check in config for sdk demo

* update cmake script and csrc's readme

* correct config's path

* add cuda include directory, otherwise compile failed in case of tensorrt8.2

* clang-format onnx2ncnn.cpp

Co-authored-by: zhangli <lzhang329@gmail.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00

186 lines
7.1 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include "catch.hpp"
#include "core/mat.h"
#include "preprocess/cpu/opencv_utils.h"
#include "preprocess/transform/transform.h"
#include "preprocess/transform/transform_utils.h"
#include "test_utils.h"
using namespace mmdeploy;
using namespace std;
using namespace mmdeploy::test;
// left, top, right, bottom
tuple<int, int, int, int> GetPadSize(const cv::Mat& mat, int dst_height, int dst_width) {
return {0, 0, dst_width - mat.cols, dst_height - mat.rows};
}
tuple<int, int, int, int> GetPadSize(const cv::Mat& mat, bool square = true) {
int size = std::max(mat.rows, mat.cols);
return GetPadSize(mat, size, size);
}
tuple<int, int, int, int> GetPadSize(const cv::Mat& mat, int divisor) {
auto pad_h = int(ceil(mat.rows * 1.0 / divisor)) * divisor;
auto pad_w = int(ceil(mat.cols * 1.0 / divisor)) * divisor;
return GetPadSize(mat, pad_h, pad_w);
}
void TestCpuPad(const Value& cfg, const cv::Mat& mat, int top, int left, int bottom, int right,
int border_type, float val) {
Device device{"cpu"};
Stream stream{device};
auto transform = CreateTransform(cfg, device, stream);
REQUIRE(transform != nullptr);
auto ref_mat = mmdeploy::cpu::Pad(mat, top, left, bottom, right, border_type, val);
auto res = transform->Process({{"img", cpu::CVMat2Tensor(mat)}});
REQUIRE(!res.has_error());
auto res_tensor = res.value()["img"].get<Tensor>();
auto res_mat = mmdeploy::cpu::Tensor2CVMat(res_tensor);
// cv::imwrite("ref.bmp", ref_mat);
// cv::imwrite("res.bmp", res_mat);
REQUIRE(mmdeploy::cpu::Compare(ref_mat, res_mat));
REQUIRE(Shape(res.value(), "pad_shape") ==
vector<int64_t>{1, ref_mat.rows, ref_mat.cols, ref_mat.channels()});
REQUIRE(Shape(res.value(), "pad_fixed_size") == std::vector<int64_t>{ref_mat.rows, ref_mat.cols});
}
void TestCudaPad(const Value& cfg, const cv::Mat& mat, int top, int left, int bottom, int right,
int border_type, float val) {
Device device{"cuda"};
Stream stream{device};
auto transform = CreateTransform(cfg, device, stream);
REQUIRE(transform != nullptr);
auto ref_mat = mmdeploy::cpu::Pad(mat, top, left, bottom, right, border_type, val);
auto res = transform->Process({{"img", cpu::CVMat2Tensor(mat)}});
REQUIRE(!res.has_error());
auto res_tensor = res.value()["img"].get<Tensor>();
REQUIRE(res_tensor.device().is_device());
Device _device{"cpu"};
auto host_tensor = MakeAvailableOnDevice(res_tensor, _device, stream);
REQUIRE(stream.Wait());
auto res_mat = mmdeploy::cpu::Tensor2CVMat(host_tensor.value());
// cv::imwrite("ref.bmp", ref_mat);
// cv::imwrite("res.bmp", res_mat);
REQUIRE(mmdeploy::cpu::Compare(ref_mat, res_mat));
REQUIRE(Shape(res.value(), "pad_shape") ==
vector<int64_t>{1, ref_mat.rows, ref_mat.cols, ref_mat.channels()});
REQUIRE(Shape(res.value(), "pad_fixed_size") == std::vector<int64_t>{ref_mat.rows, ref_mat.cols});
}
TEST_CASE("cpu Pad", "[pad]") {
auto img_path = "../../tests/preprocess/data/imagenet_banner.jpeg";
cv::Mat bgr_mat = cv::imread(img_path, cv::IMREAD_COLOR);
cv::Mat gray_mat;
cv::Mat float_bgr_mat;
cv::Mat float_gray_mat;
cv::cvtColor(bgr_mat, gray_mat, cv::COLOR_BGR2GRAY);
bgr_mat.convertTo(float_bgr_mat, CV_32FC3);
gray_mat.convertTo(float_gray_mat, CV_32FC1);
vector<cv::Mat> mats{bgr_mat, gray_mat, float_bgr_mat, float_gray_mat};
vector<string> modes{"constant", "edge", "reflect", "symmetric"};
map<string, int> border_map{{"constant", cv::BORDER_CONSTANT},
{"edge", cv::BORDER_REPLICATE},
{"reflect", cv::BORDER_REFLECT_101},
{"symmetric", cv::BORDER_REFLECT}};
SECTION("pad to square") {
bool square{true};
float val = 255.0f;
for (auto& mat : mats) {
for (auto& mode : modes) {
Value cfg{
{"type", "Pad"}, {"pad_to_square", square}, {"padding_mode", mode}, {"pad_val", val}};
auto [pad_left, pad_top, pad_right, pad_bottom] = GetPadSize(mat, square);
TestCpuPad(cfg, mat, pad_top, pad_left, pad_bottom, pad_right, border_map[mode], 255);
}
}
}
SECTION("pad with size_divisor") {
constexpr int divisor = 32;
float val = 255.0f;
for (auto& mat : mats) {
for (auto& mode : modes) {
Value cfg{
{"type", "Pad"}, {"size_divisor", divisor}, {"padding_mode", mode}, {"pad_val", val}};
auto [pad_left, pad_top, pad_right, pad_bottom] = GetPadSize(mat, divisor);
TestCpuPad(cfg, mat, pad_top, pad_left, pad_bottom, pad_right, border_map[mode], 255);
}
}
}
SECTION("pad with size") {
constexpr int height = 600;
constexpr int width = 800;
for (auto& mat : mats) {
for (auto& mode : modes) {
Value cfg{{"type", "Pad"}, {"size", {height, width}}, {"padding_mode", mode}};
auto [pad_left, pad_top, pad_right, pad_bottom] = GetPadSize(mat, height, width);
TestCpuPad(cfg, mat, pad_top, pad_left, pad_bottom, pad_right, border_map[mode], 0);
}
}
}
}
TEST_CASE("gpu Pad", "[pad]") {
auto img_path = "../../tests/preprocess/data/imagenet_banner.jpeg";
cv::Mat bgr_mat = cv::imread(img_path, cv::IMREAD_COLOR);
cv::Mat gray_mat;
cv::Mat float_bgr_mat;
cv::Mat float_gray_mat;
cv::cvtColor(bgr_mat, gray_mat, cv::COLOR_BGR2GRAY);
bgr_mat.convertTo(float_bgr_mat, CV_32FC3);
gray_mat.convertTo(float_gray_mat, CV_32FC1);
vector<cv::Mat> mats{bgr_mat, gray_mat, float_bgr_mat, float_gray_mat};
vector<string> modes{"constant", "edge", "reflect", "symmetric"};
map<string, int> border_map{{"constant", cv::BORDER_CONSTANT},
{"edge", cv::BORDER_REPLICATE},
{"reflect", cv::BORDER_REFLECT_101},
{"symmetric", cv::BORDER_REFLECT}};
SECTION("pad to square") {
bool square{true};
float val = 255.0f;
for (auto& mat : mats) {
for (auto& mode : modes) {
Value cfg{
{"type", "Pad"}, {"pad_to_square", square}, {"padding_mode", mode}, {"pad_val", val}};
auto [pad_left, pad_top, pad_right, pad_bottom] = GetPadSize(mat, square);
TestCudaPad(cfg, mat, pad_top, pad_left, pad_bottom, pad_right, border_map[mode], 255);
}
}
}
SECTION("pad with size_divisor") {
constexpr int divisor = 32;
float val = 255.0f;
for (auto& mat : mats) {
for (auto& mode : modes) {
Value cfg{
{"type", "Pad"}, {"size_divisor", divisor}, {"padding_mode", mode}, {"pad_val", val}};
auto [pad_left, pad_top, pad_right, pad_bottom] = GetPadSize(mat, divisor);
TestCudaPad(cfg, mat, pad_top, pad_left, pad_bottom, pad_right, border_map[mode], 255);
}
}
}
SECTION("pad with size") {
constexpr int height = 600;
constexpr int width = 800;
for (auto& mat : mats) {
for (auto& mode : modes) {
Value cfg{{"type", "Pad"}, {"size", {height, width}}, {"padding_mode", mode}};
auto [pad_left, pad_top, pad_right, pad_bottom] = GetPadSize(mat, height, width);
TestCudaPad(cfg, mat, pad_top, pad_left, pad_bottom, pad_right, border_map[mode], 0);
}
}
}
}