mmdeploy/tests/test_codebase/test_mmseg/test_segmentation_model.py

168 lines
5.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import mmcv
import numpy as np
import pytest
import torch
from mmdeploy.utils import Backend
from mmdeploy.utils.test import SwitchBackendWrapper, backend_checker
NUM_CLASS = 19
IMAGE_SIZE = 32
@backend_checker(Backend.ONNXRUNTIME)
class TestEnd2EndModel:
@pytest.fixture(scope='class')
def end2end_model(self):
# force add backend wrapper regardless of plugins
from mmdeploy.backend.onnxruntime import ORTWrapper
# simplify backend inference
with SwitchBackendWrapper(ORTWrapper) as wrapper:
outputs = {
'outputs': torch.rand(1, 1, IMAGE_SIZE, IMAGE_SIZE),
}
wrapper.set(outputs=outputs)
deploy_cfg = mmcv.Config(
{'onnx_config': {
'output_names': ['outputs']
}})
from mmdeploy.codebase.mmseg.deploy.segmentation_model import \
End2EndModel
class_names = ['' for i in range(NUM_CLASS)]
palette = np.random.randint(0, 255, size=(NUM_CLASS, 3))
model = End2EndModel(
Backend.ONNXRUNTIME, [''],
device='cpu',
class_names=class_names,
palette=palette,
deploy_cfg=deploy_cfg)
yield model
@pytest.mark.parametrize(
'ori_shape',
[[IMAGE_SIZE, IMAGE_SIZE, 3], [2 * IMAGE_SIZE, 2 * IMAGE_SIZE, 3]])
def test_forward(self, ori_shape, end2end_model):
imgs = [torch.rand(1, 3, IMAGE_SIZE, IMAGE_SIZE)]
img_metas = [[{
'ori_shape': ori_shape,
'img_shape': [IMAGE_SIZE, IMAGE_SIZE, 3],
'scale_factor': [1., 1., 1., 1.],
}]]
results = end2end_model.forward(imgs, img_metas)
assert results is not None, 'failed to get output using '\
'End2EndModel'
def test_forward_test(self, end2end_model):
imgs = torch.rand(2, 3, IMAGE_SIZE, IMAGE_SIZE)
results = end2end_model.forward_test(imgs)
assert isinstance(results[0], np.ndarray)
def test_show_result(self, end2end_model, tmp_path):
input_img = np.zeros([IMAGE_SIZE, IMAGE_SIZE, 3])
img_path = str(tmp_path / 'tmp.jpg')
result = [torch.rand(IMAGE_SIZE, IMAGE_SIZE)]
end2end_model.show_result(
input_img, result, '', show=False, out_file=img_path)
assert osp.exists(img_path), 'Fails to create drawn image.'
@backend_checker(Backend.RKNN)
class TestRKNNModel:
@pytest.fixture(scope='class')
def end2end_model(self):
# force add backend wrapper regardless of plugins
from mmdeploy.backend.rknn import RKNNWrapper
from mmdeploy.codebase.mmseg.deploy.segmentation_model import RKNNModel
# simplify backend inference
with SwitchBackendWrapper(RKNNWrapper) as wrapper:
outputs = [torch.rand(1, 19, IMAGE_SIZE, IMAGE_SIZE)]
wrapper.set(outputs=outputs)
deploy_cfg = mmcv.Config({
'onnx_config': {
'output_names': ['outputs']
},
'backend_config': {
'common_config': {}
}
})
class_names = ['' for i in range(NUM_CLASS)]
palette = np.random.randint(0, 255, size=(NUM_CLASS, 3))
model = RKNNModel(
Backend.RKNN, [''],
device='cpu',
class_names=class_names,
palette=palette,
deploy_cfg=deploy_cfg)
yield model
def test_forward_test(self, end2end_model):
imgs = torch.rand(2, 3, IMAGE_SIZE, IMAGE_SIZE)
results = end2end_model.forward_test(imgs)
assert isinstance(results[0], np.ndarray)
@pytest.mark.parametrize('from_file', [True, False])
@pytest.mark.parametrize('data_type', ['train', 'val', 'test'])
def test_get_classes_palette_from_config(from_file, data_type, tmp_path):
from mmseg.datasets import DATASETS
from mmdeploy.codebase.mmseg.deploy.segmentation_model import \
get_classes_palette_from_config
dataset_type = 'CityscapesDataset'
data_cfg = mmcv.Config({
'data': {
data_type:
dict(
type=dataset_type,
data_root='',
img_dir='',
ann_dir='',
pipeline=None)
}
})
if from_file:
config_path = str(tmp_path / 'tmp_cfg.py')
with open(config_path, 'w') as file:
file.write(data_cfg.pretty_text)
data_cfg = config_path
classes, palette = get_classes_palette_from_config(data_cfg)
module = DATASETS.module_dict[dataset_type]
assert classes == module.CLASSES, \
f'fail to get CLASSES of dataset: {dataset_type}'
assert palette == module.PALETTE, \
f'fail to get PALETTE of dataset: {dataset_type}'
@backend_checker(Backend.ONNXRUNTIME)
def test_build_segmentation_model():
model_cfg = mmcv.Config(
dict(data=dict(test={'type': 'CityscapesDataset'})))
deploy_cfg = mmcv.Config(
dict(
backend_config=dict(type='onnxruntime'),
onnx_config=dict(output_names=['outputs']),
codebase_config=dict(type='mmseg')))
from mmdeploy.backend.onnxruntime import ORTWrapper
# simplify backend inference
with SwitchBackendWrapper(ORTWrapper) as wrapper:
wrapper.set(model_cfg=model_cfg, deploy_cfg=deploy_cfg)
from mmdeploy.codebase.mmseg.deploy.segmentation_model import (
End2EndModel, build_segmentation_model)
segmentor = build_segmentation_model([''], model_cfg, deploy_cfg,
'cpu')
assert isinstance(segmentor, End2EndModel)