mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
Demo
We provide a demo showing what our mmdeploy can do for general model deployment.
In demo_rewrite.py
, a resnet18 model from torchvision
is rewritten through mmdeploy tool. In our rewritten model, the forward function of resnet gets modified to only down sample the original input to 4x. Original onnx model of resnet18 and its rewritten are visualized through netron.
Prerequisite
Before we run demp_rewrite.py
, we need to install pyppeteer
through:
pip install pyppeteer
Demo results
The original resnet18 model and its modified one are visualized as follows. The left model is the original resnet18 while the right model is exported after rewritten.
Original resnet18 | Rewritten model |
---|---|
![]() |
![]() |