1008 lines
36 KiB
Python
1008 lines
36 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
||
import argparse
|
||
import logging
|
||
import os
|
||
import subprocess
|
||
from pathlib import Path
|
||
from typing import List
|
||
|
||
import mmcv
|
||
import openpyxl
|
||
import pandas as pd
|
||
import yaml
|
||
from torch.hub import download_url_to_file
|
||
from torch.multiprocessing import set_start_method
|
||
|
||
import mmdeploy
|
||
from mmdeploy.utils import (get_backend, get_codebase, get_root_logger,
|
||
is_dynamic_shape)
|
||
|
||
|
||
def parse_args():
|
||
parser = argparse.ArgumentParser(description='Regression Test')
|
||
parser.add_argument(
|
||
'--codebase',
|
||
nargs='+',
|
||
help='regression test yaml path.',
|
||
default=[
|
||
'mmcls', 'mmdet', 'mmseg', 'mmpose', 'mmocr', 'mmedit', 'mmrotate',
|
||
'mmdet3d'
|
||
])
|
||
parser.add_argument(
|
||
'-p',
|
||
'--performance',
|
||
default=False,
|
||
action='store_true',
|
||
help='test performance if it set')
|
||
parser.add_argument(
|
||
'--backends', nargs='+', help='test specific backend(s)')
|
||
parser.add_argument(
|
||
'--models', nargs='+', default=['all'], help='test specific model(s)')
|
||
parser.add_argument(
|
||
'--work-dir',
|
||
type=str,
|
||
help='the dir to save logs and models',
|
||
default='../mmdeploy_regression_working_dir')
|
||
parser.add_argument(
|
||
'--checkpoint-dir',
|
||
type=str,
|
||
help='the dir to save checkpoint for all model',
|
||
default='../mmdeploy_checkpoints')
|
||
parser.add_argument(
|
||
'--device',
|
||
type=str,
|
||
help='Device type, cuda:id or cpu, cuda:0 as default',
|
||
default='cuda:0')
|
||
parser.add_argument(
|
||
'--log-level',
|
||
help='set log level',
|
||
default='INFO',
|
||
choices=list(logging._nameToLevel.keys()))
|
||
args = parser.parse_args()
|
||
|
||
return args
|
||
|
||
|
||
def merge_report(work_dir: str, logger: logging.Logger):
|
||
"""Merge all the report into one report.
|
||
|
||
Args:
|
||
work_dir (str): Work dir that including all reports.
|
||
logger (logging.Logger): Logger handler.
|
||
"""
|
||
work_dir = Path(work_dir)
|
||
res_file = work_dir.joinpath(
|
||
f'mmdeploy_regression_test_{mmdeploy.__version__}.xlsx')
|
||
logger.info(f'Whole result report saving in {res_file}')
|
||
|
||
if res_file.exists():
|
||
# delete if it existed
|
||
res_file.unlink()
|
||
|
||
for report_file in work_dir.iterdir():
|
||
if '_report.xlsx' not in report_file.name or \
|
||
report_file.name == res_file.name or \
|
||
not report_file.is_file():
|
||
# skip other file
|
||
continue
|
||
# get info from report
|
||
logger.info(f'Merging {report_file}')
|
||
df = pd.read_excel(str(report_file))
|
||
df.rename(columns={'Unnamed: 0': 'Index'}, inplace=True)
|
||
|
||
# get key then convert to list
|
||
keys = list(df.keys())
|
||
values = df.values.tolist()
|
||
|
||
# sheet name
|
||
sheet_name = report_file.stem.split('_')[0]
|
||
|
||
# begin to write
|
||
if res_file.exists():
|
||
# load if it existed
|
||
wb = openpyxl.load_workbook(str(res_file))
|
||
else:
|
||
wb = openpyxl.Workbook()
|
||
|
||
# delete if sheet already exist
|
||
if sheet_name in wb.sheetnames:
|
||
wb.remove(wb[sheet_name])
|
||
# create sheet
|
||
wb.create_sheet(title=sheet_name, index=0)
|
||
# write in row
|
||
wb[sheet_name].append(keys)
|
||
for value in values:
|
||
wb[sheet_name].append(value)
|
||
# delete the blank sheet
|
||
for name in wb.sheetnames:
|
||
ws = wb[name]
|
||
if ws.cell(1, 1).value is None:
|
||
wb.remove(ws)
|
||
# save to file
|
||
wb.save(str(res_file))
|
||
|
||
logger.info('Report merge successful.')
|
||
|
||
|
||
def get_model_metafile_info(global_info: dict, model_info: dict,
|
||
logger: logging.Logger):
|
||
"""Get model metafile information.
|
||
|
||
Args:
|
||
global_info (dict): global info from deploy yaml.
|
||
model_info (dict): model info from deploy yaml.
|
||
logger (logging.Logger): Logger handler.
|
||
|
||
Returns:
|
||
Dict: Meta info of each model config
|
||
"""
|
||
|
||
# get info from global_info and model_info
|
||
checkpoint_dir = global_info.get('checkpoint_dir', None)
|
||
assert checkpoint_dir is not None
|
||
|
||
codebase_dir = global_info.get('codebase_dir', None)
|
||
assert codebase_dir is not None
|
||
|
||
codebase_name = global_info.get('codebase_name', None)
|
||
assert codebase_name is not None
|
||
|
||
model_config_files = model_info.get('model_configs', [])
|
||
assert len(model_config_files) > 0
|
||
|
||
# make checkpoint save directory
|
||
model_name = _filter_string(model_info.get('name', 'model'))
|
||
checkpoint_save_dir = Path(checkpoint_dir).joinpath(
|
||
codebase_name, model_name)
|
||
checkpoint_save_dir.mkdir(parents=True, exist_ok=True)
|
||
logger.info(f'Saving checkpoint in {checkpoint_save_dir}')
|
||
|
||
# get model metafile info
|
||
metafile_path = Path(codebase_dir).joinpath(model_info.get('metafile'))
|
||
if not metafile_path.exists():
|
||
logger.warning(f'Metafile not exists: {metafile_path}')
|
||
return [], '', ''
|
||
with open(metafile_path) as f:
|
||
metafile_info = yaml.load(f, Loader=yaml.FullLoader)
|
||
|
||
model_meta_info = dict()
|
||
for meta_model in metafile_info.get('Models'):
|
||
if str(meta_model.get('Config')) not in model_config_files:
|
||
# skip if the model not in model_config_files
|
||
logger.warning(f'{meta_model.get("Config")} '
|
||
f'not in {model_config_files}, pls check ! '
|
||
'Skip it...')
|
||
continue
|
||
|
||
# get meta info
|
||
model_meta_info.update({meta_model.get('Config'): meta_model})
|
||
|
||
# get weight url
|
||
weights_url = meta_model.get('Weights')
|
||
weights_name = str(weights_url).split('/')[-1]
|
||
weights_save_path = checkpoint_save_dir.joinpath(weights_name)
|
||
if weights_save_path.exists() and \
|
||
not global_info.get('checkpoint_force_download', False):
|
||
logger.info(f'model {weights_name} exist, skip download it...')
|
||
continue
|
||
|
||
# Download weight
|
||
logger.info(f'Downloading {weights_url} to {weights_save_path}')
|
||
download_url_to_file(
|
||
weights_url, str(weights_save_path), progress=True)
|
||
|
||
# check weather the weight download successful
|
||
if not weights_save_path.exists():
|
||
raise FileExistsError(f'Weight {weights_name} download fail')
|
||
|
||
logger.info('All models had been downloaded successful !')
|
||
return model_meta_info, checkpoint_save_dir, codebase_dir
|
||
|
||
|
||
def update_report(report_dict: dict, model_name: str, model_config: str,
|
||
task_name: str, checkpoint: str, dataset: str,
|
||
backend_name: str, deploy_config: str,
|
||
static_or_dynamic: str, precision_type: str,
|
||
conversion_result: str, fps: str, metric_info: list,
|
||
test_pass: str, report_txt_path: Path, codebase_name: str):
|
||
"""Update report information.
|
||
|
||
Args:
|
||
report_dict (dict): Report info dict.
|
||
model_name (str): Model name.
|
||
model_config (str): Model config name.
|
||
task_name (str): Task name.
|
||
checkpoint (str): Model checkpoint name.
|
||
dataset (str): Dataset name.
|
||
backend_name (str): Backend name.
|
||
deploy_config (str): Deploy config name.
|
||
static_or_dynamic (str): Static or dynamic.
|
||
precision_type (str): Precision type of the model.
|
||
conversion_result (str): Conversion result: Successful or Fail.
|
||
fps (str): Inference speed (ms/im).
|
||
metric_info (list): Metric info list of the ${modelName}.yml.
|
||
test_pass (str): Test result: Pass or Fail.
|
||
report_txt_path (Path): Report txt path.
|
||
codebase_name (str): Codebase name.
|
||
"""
|
||
# make model path shorter
|
||
if '.pth' in checkpoint:
|
||
checkpoint = Path(checkpoint).absolute().resolve()
|
||
checkpoint = str(checkpoint).split(f'/{codebase_name}/')[-1]
|
||
checkpoint = '${CHECKPOINT_DIR}' + f'/{codebase_name}/{checkpoint}'
|
||
else:
|
||
parent_dir, filename = os.path.split(checkpoint)
|
||
parent_dir = os.path.abspath(parent_dir)
|
||
work_dir = report_txt_path.parent.absolute().resolve()
|
||
parent_dir = parent_dir.replace(str(work_dir), '${WORK_DIR}')
|
||
checkpoint = os.path.join(parent_dir, filename)
|
||
|
||
# save to tmp file
|
||
tmp_str = f'{model_name},{model_config},{task_name},{checkpoint},' \
|
||
f'{dataset},{backend_name},{deploy_config},' \
|
||
f'{static_or_dynamic},{precision_type},{conversion_result},'
|
||
|
||
# save to report
|
||
report_dict.get('Model').append(model_name)
|
||
report_dict.get('Model Config').append(model_config)
|
||
report_dict.get('Task').append(task_name)
|
||
report_dict.get('Checkpoint').append(checkpoint)
|
||
report_dict.get('Dataset').append(dataset)
|
||
report_dict.get('Backend').append(backend_name)
|
||
report_dict.get('Deploy Config').append(deploy_config)
|
||
report_dict.get('Static or Dynamic').append(static_or_dynamic)
|
||
report_dict.get('Precision Type').append(precision_type)
|
||
report_dict.get('Conversion Result').append(conversion_result)
|
||
# report_dict.get('FPS').append(fps)
|
||
|
||
for metric in metric_info:
|
||
for metric_name, metric_value in metric.items():
|
||
metric_name = str(metric_name)
|
||
report_dict.get(metric_name).append(metric_value)
|
||
tmp_str += f'{metric_value},'
|
||
report_dict.get('Test Pass').append(test_pass)
|
||
|
||
tmp_str += f'{test_pass}\n'
|
||
|
||
with open(report_txt_path, 'a+', encoding='utf-8') as f:
|
||
f.write(tmp_str)
|
||
|
||
|
||
def get_pytorch_result(model_name: str, meta_info: dict, checkpoint_path: Path,
|
||
model_config_path: Path, model_config_name: str,
|
||
test_yaml_metric_info: dict, report_dict: dict,
|
||
logger: logging.Logger, report_txt_path: Path,
|
||
codebase_name: str):
|
||
"""Get metric from metafile info of the model.
|
||
|
||
Args:
|
||
model_name (str): Name of model.
|
||
meta_info (dict): Metafile info from model's metafile.yml.
|
||
checkpoint_path (Path): Checkpoint path.
|
||
model_config_path (Path): Model config path.
|
||
model_config_name (str): Name of model config in meta_info.
|
||
test_yaml_metric_info (dict): Metrics info from test yaml.
|
||
report_dict (dict): Report info dict.
|
||
logger (logging.Logger): Logger.
|
||
report_txt_path (Path): Report txt path.
|
||
codebase_name (str): Codebase name.
|
||
|
||
Returns:
|
||
Dict: metric info of the model
|
||
"""
|
||
|
||
if model_config_name not in meta_info:
|
||
logger.warning(
|
||
f'{model_config_name} not in meta_info, which is {meta_info}')
|
||
return {}
|
||
|
||
# get metric
|
||
model_info = meta_info[model_config_name]
|
||
metafile_metric_info = model_info['Results']
|
||
pytorch_metric = dict()
|
||
using_dataset = set()
|
||
using_task = set()
|
||
configured_dataset = set()
|
||
for items in test_yaml_metric_info.values():
|
||
if 'dataset' in items:
|
||
configured_dataset.add(items['dataset'])
|
||
# Get metrics info from metafile
|
||
for metafile_metric in metafile_metric_info:
|
||
dataset = metafile_metric['Dataset']
|
||
_metrics = metafile_metric['Metrics']
|
||
if configured_dataset:
|
||
for ds in configured_dataset:
|
||
if ds in _metrics:
|
||
pytorch_metric.update(_metrics[ds])
|
||
if ds == dataset:
|
||
pytorch_metric.update(_metrics)
|
||
else:
|
||
pytorch_metric.update(_metrics)
|
||
task_name = metafile_metric['Task']
|
||
if task_name not in using_task:
|
||
using_task.add(task_name)
|
||
if dataset not in using_dataset:
|
||
using_dataset.add(dataset)
|
||
|
||
dataset_type = '|'.join(list(using_dataset))
|
||
task_type = '|'.join(list(using_task))
|
||
metric_list = []
|
||
for metric in test_yaml_metric_info:
|
||
value = '-'
|
||
if metric in pytorch_metric:
|
||
value = pytorch_metric[metric]
|
||
metric_list.append({metric: value})
|
||
valid_pytorch_metric = {
|
||
k: v
|
||
for k, v in pytorch_metric.items() if k in test_yaml_metric_info
|
||
}
|
||
# get pytorch fps value
|
||
fps_info = model_info.get('Metadata').get('inference time (ms/im)')
|
||
if fps_info is None:
|
||
fps = '-'
|
||
elif isinstance(fps_info, list):
|
||
fps = fps_info[0].get('value')
|
||
else:
|
||
fps = fps_info.get('value')
|
||
|
||
logger.info(f'Got metric_list = {metric_list} ')
|
||
logger.info(f'Got pytorch_metric = {pytorch_metric} ')
|
||
|
||
# update report
|
||
update_report(
|
||
report_dict=report_dict,
|
||
model_name=model_name,
|
||
model_config=str(model_config_path),
|
||
task_name=task_type,
|
||
checkpoint=str(checkpoint_path),
|
||
dataset=dataset_type,
|
||
backend_name='Pytorch',
|
||
deploy_config='-',
|
||
static_or_dynamic='-',
|
||
precision_type='-',
|
||
conversion_result='-',
|
||
fps=fps,
|
||
metric_info=metric_list,
|
||
test_pass='-',
|
||
report_txt_path=report_txt_path,
|
||
codebase_name=codebase_name)
|
||
|
||
logger.info(f'Got {model_config_path} metric: {valid_pytorch_metric}')
|
||
dataset_info = dict(dataset=dataset_type, task=task_type)
|
||
return valid_pytorch_metric, dataset_info
|
||
|
||
|
||
def parse_metric_json(json_file: str) -> dict:
|
||
"""Parse metrics result from output json file.
|
||
|
||
Args:
|
||
json_file: Input json file.
|
||
Returns:
|
||
dict: metric results
|
||
"""
|
||
logger = get_root_logger()
|
||
if not os.path.exists(json_file):
|
||
logger.warning(f'File not found: {json_file}')
|
||
result = {}
|
||
else:
|
||
logger.info(f'Parse test result from {json_file}')
|
||
result = mmcv.load(json_file)
|
||
return result
|
||
|
||
|
||
def run_cmd(cmd_lines: List[str], log_path: Path):
|
||
"""
|
||
Args:
|
||
cmd_lines: (list[str]): A command in multiple line style.
|
||
log_path (Path): Path to log file.
|
||
|
||
Returns:
|
||
int: error code.
|
||
"""
|
||
import platform
|
||
system = platform.system().lower()
|
||
|
||
if system == 'windows':
|
||
sep = r'`'
|
||
else: # 'Linux', 'Darwin'
|
||
sep = '\\'
|
||
cmd_for_run = ' '.join(cmd_lines)
|
||
cmd_for_log = f' {sep}\n'.join(cmd_lines) + '\n'
|
||
parent_path = log_path.parent
|
||
if not parent_path.exists():
|
||
parent_path.mkdir(parents=True, exist_ok=True)
|
||
logger = get_root_logger()
|
||
logger.info(100 * '-')
|
||
logger.info(f'Start running cmd\n{cmd_for_log}')
|
||
logger.info(f'Logging log to \n{log_path}')
|
||
|
||
with open(log_path, 'w', encoding='utf-8') as file_handler:
|
||
# write cmd
|
||
file_handler.write(f'Command:\n{cmd_for_log}\n')
|
||
file_handler.flush()
|
||
process_res = subprocess.Popen(
|
||
cmd_for_run,
|
||
cwd=str(Path(__file__).absolute().parent.parent),
|
||
shell=True,
|
||
stdout=file_handler,
|
||
stderr=file_handler)
|
||
process_res.wait()
|
||
return_code = process_res.returncode
|
||
|
||
if return_code != 0:
|
||
logger.error(f'Got shell return code={return_code}')
|
||
with open(log_path, 'r') as f:
|
||
content = f.read()
|
||
logger.error(f'Log error message\n{content}')
|
||
return return_code
|
||
|
||
|
||
def get_fps_metric(shell_res: int, pytorch_metric: dict, metric_info: dict,
|
||
json_file: str):
|
||
"""Get fps and metric.
|
||
|
||
Args:
|
||
shell_res (int): Backend convert result: 0 is success.
|
||
pytorch_metric (dict): Metric info of pytorch metafile.
|
||
json_file (Path): Json file of evaluation results.
|
||
metric_info (dict): Metric info.
|
||
|
||
Returns:
|
||
Float: fps: FPS of the model.
|
||
List: metric_list: metric result list.
|
||
Bool: test_pass: If the test pass or not.
|
||
"""
|
||
fps = '-'
|
||
# check if converted successes or not.
|
||
if shell_res != 0:
|
||
backend_results = {}
|
||
else:
|
||
backend_results = parse_metric_json(json_file)
|
||
|
||
compare_results = {}
|
||
output_result = {}
|
||
for metric_name, metric_value in pytorch_metric.items():
|
||
metric_key = metric_info[metric_name]['metric_key']
|
||
tolerance = metric_info[metric_name]['tolerance']
|
||
multi_value = metric_info[metric_name].get('multi_value', 1.0)
|
||
compare_flag = False
|
||
output_result[metric_name] = 'x'
|
||
if metric_key in backend_results:
|
||
backend_value = backend_results[metric_key] * multi_value
|
||
output_result[metric_name] = backend_value
|
||
if backend_value >= metric_value - tolerance:
|
||
compare_flag = True
|
||
compare_results[metric_name] = compare_flag
|
||
|
||
if len(compare_results):
|
||
test_pass = all(list(compare_results.values()))
|
||
else:
|
||
test_pass = False
|
||
return fps, output_result, test_pass
|
||
|
||
|
||
def get_backend_fps_metric(deploy_cfg_path: str, model_cfg_path: Path,
|
||
convert_checkpoint_path: str, device_type: str,
|
||
logger: logging.Logger, pytorch_metric: dict,
|
||
metric_info: dict, backend_name: str,
|
||
precision_type: str, convert_result: bool,
|
||
report_dict: dict, infer_type: str, log_path: Path,
|
||
dataset_info: dict, report_txt_path: Path,
|
||
model_name: str):
|
||
"""Get backend fps and metric.
|
||
|
||
Args:
|
||
deploy_cfg_path (str): Deploy config path.
|
||
model_cfg_path (Path): Model config path.
|
||
convert_checkpoint_path (str): Converted checkpoint path.
|
||
device_type (str): Device for converting.
|
||
logger (logging.Logger): Logger handler.
|
||
pytorch_metric (dict): Pytorch metric info dict get from metafile.
|
||
metric_info (dict): Metric info from test yaml.
|
||
backend_name (str): Backend name.
|
||
precision_type (str): Precision type for evaluation.
|
||
convert_result (bool): Backend convert result.
|
||
report_dict (dict): Backend convert result.
|
||
infer_type (str): Infer type.
|
||
log_path (Path): Logger save path.
|
||
dataset_info (dict): Dataset info.
|
||
report_txt_path (Path): report txt save path.
|
||
model_name (str): Name of model in test yaml.
|
||
"""
|
||
json_file = os.path.splitext(str(log_path))[0] + '.json'
|
||
cmd_lines = [
|
||
'python3 tools/test.py', f'{deploy_cfg_path}',
|
||
f'{str(model_cfg_path.absolute())}', f'--json-file {json_file}',
|
||
f'--model {convert_checkpoint_path}', f'--device {device_type}'
|
||
]
|
||
|
||
codebase_name = get_codebase(str(deploy_cfg_path)).value
|
||
if codebase_name != 'mmedit':
|
||
eval_name = ' '.join(
|
||
list(set([metric_info[k]['eval_name'] for k in pytorch_metric])))
|
||
# mmedit dont --metric
|
||
cmd_lines += [f'--metrics {eval_name}']
|
||
# Test backend
|
||
return_code = run_cmd(cmd_lines, log_path)
|
||
fps, backend_metric, test_pass = get_fps_metric(return_code,
|
||
pytorch_metric,
|
||
metric_info, json_file)
|
||
logger.info(f'test_pass={test_pass}, results{backend_metric}')
|
||
metric_list = []
|
||
for metric in metric_info:
|
||
value = '-'
|
||
if metric in backend_metric:
|
||
value = backend_metric[metric]
|
||
metric_list.append({metric: value})
|
||
dataset_type = dataset_info['dataset']
|
||
task_name = dataset_info['task']
|
||
|
||
# update the report
|
||
update_report(
|
||
report_dict=report_dict,
|
||
model_name=model_name,
|
||
model_config=str(model_cfg_path),
|
||
task_name=task_name,
|
||
checkpoint=convert_checkpoint_path,
|
||
dataset=dataset_type,
|
||
backend_name=backend_name,
|
||
deploy_config=str(deploy_cfg_path),
|
||
static_or_dynamic=infer_type,
|
||
precision_type=precision_type,
|
||
conversion_result=str(convert_result),
|
||
fps=fps,
|
||
metric_info=metric_list,
|
||
test_pass=str(test_pass),
|
||
report_txt_path=report_txt_path,
|
||
codebase_name=codebase_name)
|
||
|
||
|
||
def get_precision_type(deploy_cfg_name: str):
|
||
"""Get backend precision_type according to the name of deploy config.
|
||
|
||
Args:
|
||
deploy_cfg_name (str): Name of the deploy config.
|
||
|
||
Returns:
|
||
Str: precision_type: Precision type of the deployment name.
|
||
"""
|
||
if 'int8' in deploy_cfg_name:
|
||
precision_type = 'int8'
|
||
elif 'fp16' in deploy_cfg_name:
|
||
precision_type = 'fp16'
|
||
else:
|
||
precision_type = 'fp32'
|
||
|
||
return precision_type
|
||
|
||
|
||
def replace_top_in_pipeline_json(backend_output_path: Path,
|
||
logger: logging.Logger):
|
||
"""Replace `topk` with `num_classes` in `pipeline.json`.
|
||
|
||
Args:
|
||
backend_output_path (Path): Backend convert result path.
|
||
logger (logger.Logger): Logger handler.
|
||
"""
|
||
|
||
sdk_pipeline_json_path = backend_output_path.joinpath('pipeline.json')
|
||
sdk_pipeline_json = mmcv.load(sdk_pipeline_json_path)
|
||
|
||
pipeline_tasks = sdk_pipeline_json.get('pipeline', {}).get('tasks', [])
|
||
for index, task in enumerate(pipeline_tasks):
|
||
if task.get('name', '') != 'postprocess':
|
||
continue
|
||
num_classes = task.get('params', {}).get('num_classes', 0)
|
||
if 'topk' not in task.get('params', {}):
|
||
continue
|
||
sdk_pipeline_json['pipeline']['tasks'][index]['params']['topk'] = \
|
||
num_classes
|
||
|
||
logger.info(f'sdk_pipeline_json = {sdk_pipeline_json}')
|
||
|
||
mmcv.dump(
|
||
sdk_pipeline_json, sdk_pipeline_json_path, sort_keys=False, indent=4)
|
||
|
||
logger.info('replace done')
|
||
|
||
|
||
def gen_log_path(backend_output_path: Path, log_name: str):
|
||
log_path = backend_output_path.joinpath(log_name).absolute().resolve()
|
||
if log_path.exists():
|
||
# clear the log file
|
||
with open(log_path, 'w') as f_log:
|
||
f_log.write('')
|
||
|
||
return log_path
|
||
|
||
|
||
def get_backend_result(pipeline_info: dict, model_cfg_path: Path,
|
||
checkpoint_path: Path, work_dir: Path, device_type: str,
|
||
pytorch_metric: dict, metric_info: dict,
|
||
report_dict: dict, test_type: str,
|
||
logger: logging.Logger, backend_file_name: [str, list],
|
||
report_txt_path: Path, metafile_dataset: str,
|
||
model_name: str):
|
||
"""Convert model to onnx and then get metric.
|
||
|
||
Args:
|
||
pipeline_info (dict): Pipeline info of test yaml.
|
||
model_cfg_path (Path): Model config file path.
|
||
checkpoint_path (Path): Checkpoints path.
|
||
work_dir (Path): A working directory.
|
||
device_type (str): A string specifying device, defaults to 'cuda'.
|
||
pytorch_metric (dict): All pytorch metric info.
|
||
metric_info (dict): Metrics info.
|
||
report_dict (dict): Report info dict.
|
||
test_type (str): Test type. 'precision' or 'convert'.
|
||
logger (logging.Logger): Logger.
|
||
backend_file_name (str | list): backend file save name.
|
||
report_txt_path (Path): report txt path.
|
||
metafile_dataset (str): Dataset type get from metafile.
|
||
model_name (str): Name of model in test yaml.
|
||
"""
|
||
# get backend_test info
|
||
backend_test = pipeline_info.get('backend_test', False)
|
||
|
||
# get convert_image info
|
||
convert_image_info = pipeline_info.get('convert_image', None)
|
||
if convert_image_info is not None:
|
||
input_img_path = \
|
||
convert_image_info.get('input_img', './tests/data/tiger.jpeg')
|
||
test_img_path = convert_image_info.get('test_img', None)
|
||
else:
|
||
input_img_path = './tests/data/tiger.jpeg'
|
||
test_img_path = None
|
||
|
||
# get sdk_cfg info
|
||
sdk_config = pipeline_info.get('sdk_config', None)
|
||
if sdk_config is not None:
|
||
sdk_config = Path(sdk_config)
|
||
|
||
# Overwrite metric tolerance
|
||
metric_tolerance = pipeline_info.get('metric_tolerance', None)
|
||
if metric_tolerance is not None:
|
||
for metric, new_tolerance in metric_tolerance.items():
|
||
if metric not in metric_info:
|
||
logger.debug(f'{metric} not in {metric_info},'
|
||
'skip compare it...')
|
||
continue
|
||
if new_tolerance is None:
|
||
logger.debug('new_tolerance is None, skip it ...')
|
||
continue
|
||
metric_info[metric]['tolerance'] = new_tolerance
|
||
|
||
if backend_test is False and sdk_config is None:
|
||
test_type = 'convert'
|
||
|
||
deploy_cfg_path = Path(pipeline_info.get('deploy_config'))
|
||
backend_name = str(get_backend(str(deploy_cfg_path)).name).lower()
|
||
|
||
# change device_type for special case
|
||
if backend_name in ['ncnn', 'openvino', 'onnxruntime']:
|
||
device_type = 'cpu'
|
||
|
||
infer_type = \
|
||
'dynamic' if is_dynamic_shape(str(deploy_cfg_path)) else 'static'
|
||
|
||
precision_type = get_precision_type(deploy_cfg_path.name)
|
||
codebase_name = get_codebase(str(deploy_cfg_path)).value
|
||
|
||
backend_output_path = Path(work_dir). \
|
||
joinpath(Path(checkpoint_path).parent.parent.name,
|
||
Path(checkpoint_path).parent.name,
|
||
backend_name,
|
||
infer_type,
|
||
precision_type,
|
||
Path(checkpoint_path).stem)
|
||
backend_output_path.mkdir(parents=True, exist_ok=True)
|
||
|
||
# convert cmd string
|
||
cmd_lines = [
|
||
'python3 ./tools/deploy.py',
|
||
f'{str(deploy_cfg_path.absolute().resolve())}',
|
||
f'{str(model_cfg_path.absolute().resolve())}',
|
||
f'"{str(checkpoint_path.absolute().resolve())}"',
|
||
f'"{input_img_path}"', f'--work-dir "{backend_output_path}"',
|
||
f'--device {device_type} ', '--log-level INFO'
|
||
]
|
||
|
||
if sdk_config is not None:
|
||
cmd_lines += ['--dump-info']
|
||
|
||
if test_img_path is not None:
|
||
cmd_lines += [f'--test-img {test_img_path}']
|
||
|
||
if precision_type == 'int8':
|
||
calib_dataset_cfg = pipeline_info.get('calib_dataset_cfg', None)
|
||
if calib_dataset_cfg is not None:
|
||
cmd_lines += [f'--calib-dataset-cfg {calib_dataset_cfg}']
|
||
|
||
convert_log_path = backend_output_path.joinpath('convert.log')
|
||
return_code = run_cmd(cmd_lines, convert_log_path)
|
||
convert_result = return_code == 0
|
||
logger.info(f'Got convert_result = {convert_result}')
|
||
|
||
if isinstance(backend_file_name, list):
|
||
report_checkpoint = backend_output_path.joinpath(backend_file_name[0])
|
||
convert_checkpoint_path = ''
|
||
for backend_file in backend_file_name:
|
||
backend_path = backend_output_path.joinpath(backend_file)
|
||
backend_path = str(backend_path.absolute().resolve())
|
||
convert_checkpoint_path += f'{str(backend_path)} '
|
||
else:
|
||
report_checkpoint = backend_output_path.joinpath(backend_file_name)
|
||
convert_checkpoint_path = \
|
||
str(backend_output_path.joinpath(backend_file_name))
|
||
|
||
# Test the model
|
||
if convert_result and test_type == 'precision':
|
||
# test the model metric
|
||
if backend_test:
|
||
log_path = \
|
||
gen_log_path(backend_output_path, 'backend_test.log')
|
||
get_backend_fps_metric(
|
||
deploy_cfg_path=str(deploy_cfg_path),
|
||
model_cfg_path=model_cfg_path,
|
||
convert_checkpoint_path=convert_checkpoint_path,
|
||
device_type=device_type,
|
||
logger=logger,
|
||
pytorch_metric=pytorch_metric,
|
||
metric_info=metric_info,
|
||
backend_name=backend_name,
|
||
precision_type=precision_type,
|
||
convert_result=convert_result,
|
||
report_dict=report_dict,
|
||
infer_type=infer_type,
|
||
log_path=log_path,
|
||
dataset_info=metafile_dataset,
|
||
report_txt_path=report_txt_path,
|
||
model_name=model_name)
|
||
|
||
if sdk_config is not None:
|
||
|
||
if codebase_name == 'mmcls':
|
||
replace_top_in_pipeline_json(backend_output_path, logger)
|
||
|
||
log_path = gen_log_path(backend_output_path, 'sdk_test.log')
|
||
# sdk test
|
||
get_backend_fps_metric(
|
||
deploy_cfg_path=str(sdk_config),
|
||
model_cfg_path=model_cfg_path,
|
||
convert_checkpoint_path=str(backend_output_path),
|
||
device_type=device_type,
|
||
logger=logger,
|
||
pytorch_metric=pytorch_metric,
|
||
metric_info=metric_info,
|
||
backend_name=f'SDK-{backend_name}',
|
||
precision_type=precision_type,
|
||
convert_result=convert_result,
|
||
report_dict=report_dict,
|
||
infer_type=infer_type,
|
||
log_path=log_path,
|
||
dataset_info=metafile_dataset,
|
||
report_txt_path=report_txt_path,
|
||
model_name=model_name)
|
||
else:
|
||
logger.info('Only test convert, saving to report...')
|
||
metric_list = [{metric: '-'} for metric in metric_info]
|
||
fps = '-'
|
||
test_pass = convert_result
|
||
dataset_type = metafile_dataset['dataset']
|
||
task_name = metafile_dataset['task']
|
||
# update the report
|
||
update_report(
|
||
report_dict=report_dict,
|
||
model_name=model_name,
|
||
model_config=str(model_cfg_path),
|
||
task_name=task_name,
|
||
checkpoint=str(report_checkpoint),
|
||
dataset=dataset_type,
|
||
backend_name=backend_name,
|
||
deploy_config=str(deploy_cfg_path),
|
||
static_or_dynamic=infer_type,
|
||
precision_type=precision_type,
|
||
conversion_result=str(convert_result),
|
||
fps=fps,
|
||
metric_info=metric_list,
|
||
test_pass=str(test_pass),
|
||
report_txt_path=report_txt_path,
|
||
codebase_name=codebase_name)
|
||
|
||
|
||
def save_report(report_info: dict, report_save_path: Path,
|
||
logger: logging.Logger):
|
||
"""Convert model to onnx and then get metric.
|
||
|
||
Args:
|
||
report_info (dict): Report info dict.
|
||
report_save_path (Path): Report save path.
|
||
logger (logging.Logger): Logger.
|
||
"""
|
||
logger.info('Saving regression test report to '
|
||
f'{report_save_path.absolute().resolve()}, pls wait...')
|
||
try:
|
||
df = pd.DataFrame(report_info)
|
||
df.to_excel(report_save_path)
|
||
except ValueError:
|
||
logger.info(f'Got error report_info = {report_info}')
|
||
|
||
logger.info('Saved regression test report to '
|
||
f'{report_save_path.absolute().resolve()}.')
|
||
|
||
|
||
def _filter_string(inputs):
|
||
"""Remove non alpha&number character from input string.
|
||
|
||
Args:
|
||
inputs(str): Input string.
|
||
|
||
Returns:
|
||
str: Output of only alpha&number string.
|
||
"""
|
||
outputs = ''.join([i.lower() for i in inputs if i.isalnum()])
|
||
return outputs
|
||
|
||
|
||
def main():
|
||
args = parse_args()
|
||
set_start_method('spawn')
|
||
logger = get_root_logger(log_level=args.log_level)
|
||
|
||
test_type = 'precision' if args.performance else 'convert'
|
||
logger.info(f'Processing regression test in {test_type} mode.')
|
||
|
||
backend_file_info = {
|
||
'onnxruntime': 'end2end.onnx',
|
||
'tensorrt': 'end2end.engine',
|
||
'openvino': 'end2end.xml',
|
||
'ncnn': ['end2end.param', 'end2end.bin'],
|
||
'pplnn': ['end2end.onnx', 'end2end.json'],
|
||
'torchscript': 'end2end.pt'
|
||
}
|
||
|
||
backend_list = args.backends
|
||
if backend_list is None:
|
||
backend_list = [
|
||
'onnxruntime', 'tensorrt', 'openvino', 'ncnn', 'pplnn',
|
||
'torchscript'
|
||
]
|
||
assert isinstance(backend_list, list)
|
||
logger.info(f'Regression test backend list = {backend_list}')
|
||
|
||
args.models = [_filter_string(s) for s in args.models]
|
||
logger.info(f'Regression test models list = {args.models}')
|
||
|
||
assert ' ' not in args.work_dir, \
|
||
f'No empty space included in {args.work_dir}'
|
||
assert ' ' not in args.checkpoint_dir, \
|
||
f'No empty space included in {args.checkpoint_dir}'
|
||
|
||
work_dir = Path(args.work_dir)
|
||
work_dir.mkdir(parents=True, exist_ok=True)
|
||
|
||
deploy_yaml_list = [
|
||
f'./tests/regression/{codebase}.yml' for codebase in args.codebase
|
||
]
|
||
|
||
for deploy_yaml in deploy_yaml_list:
|
||
|
||
if not Path(deploy_yaml).exists():
|
||
raise FileNotFoundError(f'deploy_yaml {deploy_yaml} not found, '
|
||
'please check !')
|
||
|
||
with open(deploy_yaml) as f:
|
||
yaml_info = yaml.load(f, Loader=yaml.FullLoader)
|
||
|
||
report_save_path = \
|
||
work_dir.joinpath(Path(deploy_yaml).stem + '_report.xlsx')
|
||
report_txt_path = report_save_path.with_suffix('.txt')
|
||
|
||
report_dict = {
|
||
'Model': [],
|
||
'Model Config': [],
|
||
'Task': [],
|
||
'Checkpoint': [],
|
||
'Dataset': [],
|
||
'Backend': [],
|
||
'Deploy Config': [],
|
||
'Static or Dynamic': [],
|
||
'Precision Type': [],
|
||
'Conversion Result': [],
|
||
# 'FPS': []
|
||
}
|
||
|
||
global_info = yaml_info.get('globals')
|
||
metric_info = global_info.get('metric_info', {})
|
||
for metric_name in metric_info:
|
||
report_dict.update({metric_name: []})
|
||
report_dict.update({'Test Pass': []})
|
||
|
||
global_info.update({'checkpoint_dir': args.checkpoint_dir})
|
||
global_info.update(
|
||
{'codebase_name': Path(deploy_yaml).stem.split('_')[0]})
|
||
|
||
with open(report_txt_path, 'w') as f_report:
|
||
title_str = ''
|
||
for key in report_dict:
|
||
title_str += f'{key},'
|
||
title_str = title_str[:-1] + '\n'
|
||
f_report.write(title_str) # clear the report tmp file
|
||
|
||
models_info = yaml_info.get('models')
|
||
for models in models_info:
|
||
model_name_origin = models.get('name', 'model')
|
||
model_name_new = _filter_string(model_name_origin)
|
||
if 'model_configs' not in models:
|
||
logger.warning('Can not find field "model_configs", '
|
||
f'skipping {model_name_origin}...')
|
||
continue
|
||
|
||
if args.models != ['all'] and model_name_new not in args.models:
|
||
logger.info(
|
||
f'Test specific model mode, skip {model_name_origin}...')
|
||
continue
|
||
|
||
model_metafile_info, checkpoint_save_dir, codebase_dir = \
|
||
get_model_metafile_info(global_info, models, logger)
|
||
for model_config in model_metafile_info:
|
||
logger.info(f'Processing test for {model_config}...')
|
||
|
||
# Get backends info
|
||
pipelines_info = models.get('pipelines', None)
|
||
if pipelines_info is None:
|
||
logger.warning('pipelines_info is None, skip it...')
|
||
continue
|
||
|
||
# Get model config path
|
||
model_cfg_path = Path(codebase_dir).joinpath(model_config)
|
||
assert model_cfg_path.exists()
|
||
|
||
# Get checkpoint path
|
||
checkpoint_name = Path(
|
||
model_metafile_info.get(model_config).get('Weights')).name
|
||
|
||
checkpoint_path = Path(checkpoint_save_dir, checkpoint_name)
|
||
assert checkpoint_path.exists()
|
||
|
||
# Get pytorch from metafile.yml
|
||
pytorch_metric, metafile_dataset = get_pytorch_result(
|
||
model_name_origin, model_metafile_info, checkpoint_path,
|
||
model_cfg_path, model_config, metric_info, report_dict,
|
||
logger, report_txt_path, global_info.get('codebase_name'))
|
||
|
||
for pipeline in pipelines_info:
|
||
deploy_config = pipeline.get('deploy_config')
|
||
backend_name = get_backend(deploy_config).name.lower()
|
||
if backend_name not in backend_list:
|
||
logger.warning(f'backend_name ({backend_name}) not '
|
||
f'in {backend_list}, skip it...')
|
||
continue
|
||
|
||
backend_file_name = \
|
||
backend_file_info.get(backend_name, None)
|
||
if backend_file_name is None:
|
||
logger.warning('backend_file_name is None, '
|
||
'skip it...')
|
||
continue
|
||
|
||
get_backend_result(pipeline, model_cfg_path,
|
||
checkpoint_path, work_dir, args.device,
|
||
pytorch_metric, metric_info,
|
||
report_dict, test_type, logger,
|
||
backend_file_name, report_txt_path,
|
||
metafile_dataset, model_name_origin)
|
||
if len(report_dict.get('Model')) > 0:
|
||
save_report(report_dict, report_save_path, logger)
|
||
else:
|
||
logger.info(f'No model for {deploy_yaml}, not saving report.')
|
||
|
||
# merge report
|
||
merge_report(str(work_dir), logger)
|
||
|
||
logger.info('All done.')
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|