Test on TVM
Supported Models
Model |
Codebase |
Model config |
RetinaNet |
MMDetection |
config |
Faster R-CNN |
MMDetection |
config |
YOLOv3 |
MMDetection |
config |
YOLOX |
MMDetection |
config |
Mask R-CNN |
MMDetection |
config |
SSD |
MMDetection |
config |
ResNet |
MMClassification |
config |
ResNeXt |
MMClassification |
config |
SE-ResNet |
MMClassification |
config |
MobileNetV2 |
MMClassification |
config |
ShuffleNetV1 |
MMClassification |
config |
ShuffleNetV2 |
MMClassification |
config |
VisionTransformer |
MMClassification |
config |
FCN |
MMSegmentation |
config |
PSPNet |
MMSegmentation |
config |
DeepLabV3 |
MMSegmentation |
config |
DeepLabV3+ |
MMSegmentation |
config |
UNet |
MMSegmentation |
config |
The table above list the models that we have tested. Models not listed on the table might still be able to converted. Please have a try.
Test
mmdet(*) |
metric |
PyTorch |
TVM |
SSD |
box AP |
25.5 |
25.5 |
*: We only test model on ssd since dynamic shape is not supported for now.
mmseg |
metric |
PyTorch |
TVM |
FCN |
mIoU |
72.25 |
72.36 |
PSPNet |
mIoU |
78.55 |
77.90 |