mmdeploy/tools/test.py

139 lines
5.1 KiB
Python

import argparse
import sys
from mmcv import DictAction
from mmcv.parallel import MMDataParallel
from mmdeploy.apis import (build_dataloader, build_dataset, init_backend_model,
post_process_outputs, single_gpu_test)
from mmdeploy.utils.config_utils import get_codebase, load_config
from mmdeploy.utils.timer import TimeCounter
def parse_args():
parser = argparse.ArgumentParser(
description='MMDeploy test (and eval) a backend.')
parser.add_argument('deploy_cfg', help='Deploy config path')
parser.add_argument('model_cfg', help='Model config path')
parser.add_argument(
'--model', type=str, nargs='+', help='Input model files.')
parser.add_argument('--out', help='output result file in pickle format')
parser.add_argument(
'--format-only',
action='store_true',
help='Format the output results without perform evaluation. It is'
'useful when you want to format the result to a specific format and '
'submit it to the test server')
parser.add_argument(
'--metrics',
type=str,
nargs='+',
help='evaluation metrics, which depends on the codebase and the '
'dataset, e.g., "bbox", "segm", "proposal" for COCO, and "mAP", '
'"recall" for PASCAL VOC in mmdet; "accuracy", "precision", "recall", '
'"f1_score", "support" for single label dataset, and "mAP", "CP", "CR"'
', "CF1", "OP", "OR", "OF1" for multi-label dataset in mmcls')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument(
'--show-dir', help='directory where painted images will be saved')
parser.add_argument(
'--show-score-thr',
type=float,
default=0.3,
help='score threshold (default: 0.3)')
parser.add_argument(
'--device', help='device used for conversion', default='cpu')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--metric-options',
nargs='+',
action=DictAction,
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function')
parser.add_argument(
'--speed-test', action='store_true', help='activate speed test')
parser.add_argument(
'--warmup',
type=int,
help='warmup before counting inference elaps, require setting '
'speed-test first',
default=10)
parser.add_argument(
'--log-interval',
type=int,
help='the interval between each log, require setting '
'speed-test first',
default=100)
parser.add_argument(
'--log2file',
type=str,
help='log speed in file format ,need speed-test first')
args = parser.parse_args()
return args
def main():
args = parse_args()
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
deploy_cfg_path = args.deploy_cfg
model_cfg_path = args.model_cfg
# load deploy_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)
# merge options for model cfg
if args.cfg_options is not None:
model_cfg.merge_from_dict(args.cfg_options)
# prepare the dataset loader
codebase = get_codebase(deploy_cfg)
dataset_type = 'test'
dataset = build_dataset(codebase, model_cfg, dataset_type)
data_loader = build_dataloader(
codebase,
dataset,
samples_per_gpu=1,
workers_per_gpu=model_cfg.data.workers_per_gpu)
# load the model of the backend
device_id = -1 if args.device == 'cpu' else 0
model = init_backend_model(
args.model,
model_cfg=args.model_cfg,
deploy_cfg=args.deploy_cfg,
device_id=device_id)
model = MMDataParallel(model, device_ids=[0])
if args.speed_test:
with_sync = device_id == 0
output_file = sys.stdout
if args.log2file:
output_file = args.log2file
with TimeCounter.activate(
warmup=args.warmup,
log_interval=args.log_interval,
with_sync=with_sync,
file=output_file):
outputs = single_gpu_test(codebase, model, data_loader, args.show,
args.show_dir, args.show_score_thr)
else:
outputs = single_gpu_test(codebase, model, data_loader, args.show,
args.show_dir, args.show_score_thr)
post_process_outputs(outputs, dataset, model_cfg, codebase, args.metrics,
args.out, args.metric_options, args.format_only)
if __name__ == '__main__':
main()