mmdeploy/tests/test_codebase/test_mmocr/data/dbnet.py

51 lines
1.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
model = dict(
type='DBNet',
backbone=dict(
type='mmdet.ResNet',
depth=18,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
norm_cfg=dict(type='BN', requires_grad=True),
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18'),
norm_eval=False,
style='caffe'),
neck=dict(type='FPNC', in_channels=[2, 4, 8, 16], lateral_channels=8),
bbox_head=dict(
type='DBHead',
text_repr_type='quad',
in_channels=8,
loss=dict(type='DBLoss', alpha=5.0, beta=10.0, bbce_loss=True)),
train_cfg=None,
test_cfg=None)
dataset_type = 'IcdarDataset'
data_root = 'tests/test_codebase/test_mmocr/data'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
test_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='MultiScaleFlipAug',
img_scale=(128, 64),
flip=False,
transforms=[
dict(type='Resize', img_scale=(256, 128), keep_ratio=True),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=16,
test_dataloader=dict(samples_per_gpu=1),
test=dict(
type=dataset_type,
ann_file=data_root + '/text_detection.json',
img_prefix=data_root,
pipeline=test_pipeline))
evaluation = dict(interval=100, metric='hmean-iou')