mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* add docstring for apis * add simple docstring for mmdet * add simple docstring for mmseg * add simple docstring for mmcls * add simple docstring for mmedit * add simple docstring for mmocr * add simple docstring for rewriting * update thresh for docstring coverage * update * update docstring * solve comments * remove unrelated symbol
129 lines
3.8 KiB
Python
129 lines
3.8 KiB
Python
from typing import Dict, Sequence, Union
|
|
|
|
import h5py
|
|
import numpy as np
|
|
import tensorrt as trt
|
|
import torch
|
|
|
|
DEFAULT_CALIBRATION_ALGORITHM = trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2
|
|
|
|
|
|
class HDF5Calibrator(trt.IInt8Calibrator):
|
|
"""HDF5 calibrator.
|
|
|
|
Args:
|
|
calib_file (str | h5py.File): Input calibration file.
|
|
input_shapes (Dict[str, Sequence[int]]): The min/opt/max shape of
|
|
each input.
|
|
model_type (str): Input model type, defaults to 'end2end'.
|
|
device_id (int): Cuda device id, defaults to 0.
|
|
algorithm (trt.CalibrationAlgoType): Calibration algo type, defaults
|
|
to `trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
calib_file: Union[str, h5py.File],
|
|
input_shapes: Dict[str, Sequence[int]],
|
|
model_type: str = 'end2end',
|
|
device_id: int = 0,
|
|
algorithm: trt.CalibrationAlgoType = DEFAULT_CALIBRATION_ALGORITHM,
|
|
**kwargs):
|
|
super().__init__()
|
|
|
|
if isinstance(calib_file, str):
|
|
calib_file = h5py.File(calib_file, mode='r')
|
|
|
|
assert 'calib_data' in calib_file
|
|
calib_data = calib_file['calib_data']
|
|
assert model_type in calib_data
|
|
calib_data = calib_data[model_type]
|
|
|
|
self.calib_file = calib_file
|
|
self.calib_data = calib_data
|
|
self.device_id = device_id
|
|
self.algorithm = algorithm
|
|
self.input_shapes = input_shapes
|
|
self.kwargs = kwargs
|
|
|
|
# create buffers that will hold data batches
|
|
self.buffers = dict()
|
|
|
|
self.count = 0
|
|
first_input_group = calib_data[list(calib_data.keys())[0]]
|
|
self.dataset_length = len(first_input_group)
|
|
self.batch_size = first_input_group['0'].shape[0]
|
|
|
|
def __del__(self):
|
|
|
|
if hasattr(self, 'calib_file'):
|
|
self.calib_file.close()
|
|
|
|
def get_batch(self, names: Sequence[str], **kwargs):
|
|
"""Get batch data."""
|
|
if self.count < self.dataset_length:
|
|
|
|
ret = []
|
|
for name in names:
|
|
input_group = self.calib_data[name]
|
|
data_np = input_group[str(self.count)][...]
|
|
data_torch = torch.from_numpy(data_np)
|
|
|
|
# tile the tensor so we can keep the same distribute
|
|
opt_shape = self.input_shapes[name]['opt_shape']
|
|
data_shape = data_torch.shape
|
|
|
|
reps = [
|
|
int(np.ceil(opt_s / data_s))
|
|
for opt_s, data_s in zip(opt_shape, data_shape)
|
|
]
|
|
|
|
data_torch = data_torch.tile(reps)
|
|
|
|
for dim, opt_s in enumerate(opt_shape):
|
|
if data_torch.shape[dim] != opt_s:
|
|
data_torch = data_torch.narrow(dim, 0, opt_s)
|
|
|
|
if name not in self.buffers:
|
|
self.buffers[name] = data_torch.cuda(self.device_id)
|
|
else:
|
|
self.buffers[name].copy_(data_torch.cuda(self.device_id))
|
|
|
|
ret.append(int(self.buffers[name].data_ptr()))
|
|
self.count += 1
|
|
return ret
|
|
else:
|
|
return None
|
|
|
|
def get_algorithm(self):
|
|
"""Get Calibration algo type.
|
|
|
|
Returns:
|
|
trt.CalibrationAlgoType: Calibration algo type.
|
|
"""
|
|
return self.algorithm
|
|
|
|
def get_batch_size(self):
|
|
"""Get batch size.
|
|
|
|
Returns:
|
|
int: An integer represents batch size.
|
|
"""
|
|
return self.batch_size
|
|
|
|
def read_calibration_cache(self, *args, **kwargs):
|
|
"""Read calibration cache.
|
|
|
|
Notes:
|
|
No need to implement this function.
|
|
"""
|
|
pass
|
|
|
|
def write_calibration_cache(self, cache, *args, **kwargs):
|
|
"""Write calibration cache.
|
|
|
|
Notes:
|
|
No need to implement this function.
|
|
"""
|
|
pass
|