mmdeploy/backend_ops/ncnn/ops/custom_reshape/custom_reshape.cpp

218 lines
5.5 KiB
C++

#include "custom_reshape.h"
#include "../ncnn_ops_definer.h"
namespace mmlab {
using namespace ncnn;
DEFINE_LAYER_CREATOR(CustomReshape)
DEFINE_NCNN_OPS(CustomReshape, CustomReshape)
CustomReshape::CustomReshape() {
one_blob_only = false;
support_inplace = false;
}
int CustomReshape::load_param(const ParamDict &pd) {
permute = pd.get(0, 0);
return 0;
}
int CustomReshape::forward(const std::vector<Mat> &bottom_blobs,
std::vector<Mat> &top_blobs,
const Option &opt) const {
const Mat &bottom_blob = bottom_blobs[0];
Mat &top_blob = top_blobs[0];
int ndim = bottom_blobs[1].w;
int w = 0;
int h = 0;
int c = 0;
if (ndim == 1) {
w = (int)(bottom_blobs[1].row(0)[0] + 0.5);
}
if (ndim == 2) {
h = (int)(bottom_blobs[1].row(0)[0] + 0.5);
w = (int)(bottom_blobs[1].row(0)[1] + 0.5);
}
if (ndim == 3) {
c = (int)(bottom_blobs[1].row(0)[0] + 0.5);
h = (int)(bottom_blobs[1].row(0)[1] + 0.5);
w = (int)(bottom_blobs[1].row(0)[2] + 0.5);
}
size_t elemsize = bottom_blob.elemsize;
int total = bottom_blob.w * bottom_blob.h * bottom_blob.c;
int dims = bottom_blob.dims;
// resolve out shape
int outw = w;
int outh = h;
int outc = c;
if (ndim == 1) {
if (outw == 0)
outw = bottom_blob.w;
else if (outw == -1)
outw = total;
else {
fprintf(stderr,
"Warning: custom shape memory maybe invalid, using "
"bottom_blob shape!\n");
outw = bottom_blob.w;
}
if (dims == 1 && bottom_blob.w == outw) {
top_blob = bottom_blob;
return 0;
}
}
if (ndim == 2) {
if (outw == 0) outw = bottom_blob.w;
if (outh == 0) outh = bottom_blob.h;
if (outw == -1) outw = total / outh;
if (outh == -1) outh = total / outw;
if (dims == 2 && bottom_blob.h == outh) {
top_blob = bottom_blob;
return 0;
}
}
if (ndim == 3) {
if (outw == 0) outw = bottom_blob.w;
if (outh == 0) outh = bottom_blob.h;
if (outc == 0) outc = bottom_blob.c;
if (outw == -1) outw = total / outc / outh;
if (outh == -1) outh = total / outc / outw;
if (outc == -1) outc = total / outh / outw;
if (dims == 3 && bottom_blob.c == outc) {
top_blob = bottom_blob;
top_blob.w = outw;
top_blob.h = outh;
return 0;
}
}
bool need_permute = permute == 1;
if (dims == 2 && ndim == 2 && bottom_blob.h == outh) need_permute = false;
if (dims == 3 && ndim == 3 && bottom_blob.c == outc) need_permute = false;
if (need_permute) {
Mat bottom_blob_permuted = bottom_blob;
if (dims == 2) {
// hw -> wh
int _w = bottom_blob.w;
int _h = bottom_blob.h;
bottom_blob_permuted.create(_h, _w, elemsize, opt.workspace_allocator);
if (bottom_blob_permuted.empty()) return -100;
const float *ptr = bottom_blob;
float *outptr = bottom_blob_permuted;
for (int i = 0; i < _w; i++) {
for (int j = 0; j < _h; j++) {
outptr[i * _h + j] = ptr[j * _w + i];
}
}
}
if (dims == 3) {
// chw -> hwc
int _w = bottom_blob.w;
int _h = bottom_blob.h;
int channels = bottom_blob.c;
bottom_blob_permuted.create(channels, _w, _h, elemsize,
opt.workspace_allocator);
if (bottom_blob_permuted.empty()) return -100;
#pragma omp parallel for num_threads(opt.num_threads)
for (int q = 0; q < _h; q++) {
float *outptr = bottom_blob_permuted.channel(q);
for (int i = 0; i < _w; i++) {
for (int j = 0; j < channels; j++) {
const float *ptr = bottom_blob.channel(j).row(q);
outptr[i * channels + j] = ptr[i];
}
}
}
}
if (ndim == 1) {
top_blob = bottom_blob_permuted.reshape(outw, opt.blob_allocator);
if (top_blob.empty()) return -100;
return 0;
}
// permute on nhwc/nhc
Mat top_blob_permuted;
if (ndim == 2) {
top_blob_permuted =
bottom_blob_permuted.reshape(outh, outw, opt.workspace_allocator);
}
if (ndim == 3) {
top_blob_permuted = bottom_blob_permuted.reshape(outc, outw, outh,
opt.workspace_allocator);
}
if (top_blob_permuted.empty()) return -100;
if (ndim == 2) {
// wh -> hw
top_blob.create(outw, outh, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
const float *ptr = top_blob_permuted;
float *outptr = top_blob;
for (int i = 0; i < outh; i++) {
for (int j = 0; j < outw; j++) {
outptr[i * outw + j] = ptr[j * outh + i];
}
}
}
if (ndim == 3) {
// chw -> hwc
top_blob.create(outw, outh, outc, elemsize, opt.blob_allocator);
if (top_blob.empty()) return -100;
#pragma omp parallel for num_threads(opt.num_threads)
for (int q = 0; q < outc; q++) {
float *outptr = top_blob.channel(q);
for (int i = 0; i < outh; i++) {
const float *ptr = top_blob_permuted.channel(i);
for (int j = 0; j < outw; j++) {
outptr[i * outw + j] = ptr[j * outc + q];
}
}
}
}
return 0;
}
if (ndim == 1) {
top_blob = bottom_blob.reshape(outw, opt.blob_allocator);
}
if (ndim == 2) {
top_blob = bottom_blob.reshape(outw, outh, opt.blob_allocator);
}
if (ndim == 3) {
top_blob = bottom_blob.reshape(outw, outh, outc, opt.blob_allocator);
}
if (top_blob.empty()) return -100;
return 0;
}
} // namespace mmlab