mmdeploy/tests/test_codebase/test_mmaction/data/model.py

187 lines
6.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
model = dict(
type='Recognizer2D',
backbone=dict(
type='ResNet',
pretrained='https://download.pytorch.org/models/resnet50-11ad3fa6.pth',
depth=50,
norm_eval=False),
cls_head=dict(
type='TSNHead',
num_classes=400,
in_channels=2048,
spatial_type='avg',
consensus=dict(type='AvgConsensus', dim=1),
dropout_ratio=0.4,
init_std=0.01,
average_clips=None),
data_preprocessor=dict(
type='ActionDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
format_shape='NCHW'),
train_cfg=None,
test_cfg=None)
train_cfg = dict(
type='EpochBasedTrainLoop', max_epochs=100, val_begin=1, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=100,
by_epoch=True,
milestones=[40, 80],
gamma=0.1)
]
optim_wrapper = dict(
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001),
clip_grad=dict(max_norm=40, norm_type=2))
default_scope = 'mmaction'
default_hooks = dict(
runtime_info=dict(type='RuntimeInfoHook'),
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=20, ignore_last=False),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(
type='CheckpointHook', interval=3, save_best='auto', max_keep_ckpts=3),
sampler_seed=dict(type='DistSamplerSeedHook'))
env_cfg = dict(
cudnn_benchmark=False,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'))
log_processor = dict(type='LogProcessor', window_size=20, by_epoch=True)
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='ActionVisualizer', vis_backends=[dict(type='LocalVisBackend')])
log_level = 'INFO'
load_from = None
resume = False
dataset_type = 'VideoDataset'
data_root = 'data/kinetics400/videos_train'
data_root_val = 'data/video'
ann_file_train = 'data/kinetics400/kinetics400_train_list_videos.txt'
ann_file_val = 'data/ann.txt'
train_pipeline = [
dict(type='DecordInit'),
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=3),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(
type='MultiScaleCrop',
input_size=224,
scales=(1, 0.875, 0.75, 0.66),
random_crop=False,
max_wh_scale_gap=1),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
val_pipeline = [
dict(type='DecordInit'),
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=3,
test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=224),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
test_pipeline = [
dict(type='DecordInit'),
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=25,
test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='TenCrop', crop_size=224),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]
train_dataloader = dict(
batch_size=32,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='VideoDataset',
ann_file='data/kinetics400/kinetics400_train_list_videos.txt',
data_prefix=dict(video='data/kinetics400/videos_train'),
pipeline=[
dict(type='DecordInit'),
dict(
type='SampleFrames', clip_len=1, frame_interval=1,
num_clips=3),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(
type='MultiScaleCrop',
input_size=224,
scales=(1, 0.875, 0.75, 0.66),
random_crop=False,
max_wh_scale_gap=1),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
]))
val_dataloader = dict(
batch_size=32,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='VideoDataset',
ann_file='tests/test_codebase/test_mmaction/data/ann.txt',
data_prefix=dict(video='tests/test_codebase/test_mmaction/data/video'),
pipeline=[
dict(type='DecordInit'),
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=3,
test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=224),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
],
test_mode=True))
test_dataloader = dict(
batch_size=1,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='VideoDataset',
ann_file='tests/test_codebase/test_mmaction/data/ann.txt',
data_prefix=dict(video='tests/test_codebase/test_mmaction/data/video'),
pipeline=[
dict(type='DecordInit'),
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=25,
test_mode=True),
dict(type='DecordDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(type='TenCrop', crop_size=224),
dict(type='FormatShape', input_format='NCHW'),
dict(type='PackActionInputs')
],
test_mode=True))
val_evaluator = dict(type='AccMetric')
test_evaluator = dict(type='AccMetric')