40 lines
1.1 KiB
Python
40 lines
1.1 KiB
Python
# model settings
|
|
model = dict(
|
|
type='ImageClassifier',
|
|
backbone=dict(
|
|
type='ResNet',
|
|
depth=50,
|
|
num_stages=4,
|
|
out_indices=(3, ),
|
|
style='pytorch'),
|
|
neck=dict(type='GlobalAveragePooling'),
|
|
head=dict(
|
|
type='LinearClsHead',
|
|
num_classes=1000,
|
|
in_channels=2048,
|
|
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
|
|
topk=(1, 5),
|
|
))
|
|
|
|
# dataset settings
|
|
dataset_type = 'ImageNet'
|
|
img_norm_cfg = dict(
|
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='Resize', size=(256, -1)),
|
|
dict(type='CenterCrop', crop_size=224),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='Collect', keys=['img'])
|
|
]
|
|
data = dict(
|
|
samples_per_gpu=32,
|
|
workers_per_gpu=2,
|
|
test=dict(
|
|
type=dataset_type,
|
|
data_prefix='data/imagenet/val',
|
|
ann_file='data/imagenet/meta/val.txt',
|
|
pipeline=test_pipeline))
|
|
evaluation = dict(interval=1, metric='accuracy')
|