mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* mmcls -> mmpretrain * add constraints.txt * fix lint * fix lint * remove constraints.txt * fix windows ci * modify requirements * fix mdlink and mmpretrain version * fix dead link * modify codebase cmakelist * fix rename
4.8 KiB
4.8 KiB
TVM 测试
支持模型列表
Model | Codebase | Model config |
---|---|---|
RetinaNet | MMDetection | config |
Faster R-CNN | MMDetection | config |
YOLOv3 | MMDetection | config |
YOLOX | MMDetection | config |
Mask R-CNN | MMDetection | config |
SSD | MMDetection | config |
ResNet | MMPretrain | config |
ResNeXt | MMPretrain | config |
SE-ResNet | MMPretrain | config |
MobileNetV2 | MMPretrain | config |
ShuffleNetV1 | MMPretrain | config |
ShuffleNetV2 | MMPretrain | config |
VisionTransformer | MMPretrain | config |
FCN | MMSegmentation | config |
PSPNet | MMSegmentation | config |
DeepLabV3 | MMSegmentation | config |
DeepLabV3+ | MMSegmentation | config |
UNet | MMSegmentation | config |
表中仅列出已测试模型,未列出的模型可能同样支持,可以自行尝试转换。
Test
- Ubuntu 20.04
- tvm 0.9.0
mmpretrain | metric | PyTorch | TVM |
---|---|---|---|
ResNet-18 | top-1 | 69.90 | 69.90 |
ResNeXt-50 | top-1 | 77.90 | 77.90 |
ShuffleNet V2 | top-1 | 69.55 | 69.55 |
MobileNet V2 | top-1 | 71.86 | 71.86 |
mmdet(*) | metric | PyTorch | TVM |
---|---|---|---|
SSD | box AP | 25.5 | 25.5 |
*: 由于暂时不支持动态转换,因此仅提供 SSD 的精度测试结果。
mmseg | metric | PyTorch | TVM |
---|---|---|---|
FCN | mIoU | 72.25 | 72.36 |
PSPNet | mIoU | 78.55 | 77.90 |