mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* check in cmake * move backend_ops to csrc/backend_ops * check in preprocess, model, some codebase and their c-apis * check in CMakeLists.txt * check in parts of test_csrc * commit everything else * add readme * update core's BUILD_INTERFACE directory * skip codespell on third_party * update trt_net and ort_net's CMakeLists * ignore clion's build directory * check in pybind11 * add onnx.proto. Remove MMDeploy's dependency on ncnn's source code * export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON * remove useless message * target include directory is wrong * change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net * skip install directory * update project's cmake * remove useless code * set CMAKE_BUILD_TYPE to Release by force if it isn't set by user * update custom ops CMakeLists * pass object target's source lists * fix lint end-of-file * fix lint: trailing whitespace * fix codespell hook * remove bicubic_interpolate to csrc/backend_ops/ * set MMDEPLOY_BUILD_SDK OFF * change custom ops build command * add spdlog installation command * update docs on how to checkout pybind11 * move bicubic_interpolate to backend_ops/tensorrt directory * remove useless code * correct cmake * fix typo * fix typo * fix install directory * correct sdk's readme * set cub dir when cuda version < 11.0 * change directory where clang-format will apply to * fix build command * add .clang-format * change clang-format style from google to file * reformat csrc/backend_ops * format sdk's code * turn off clang-format for some files * add -Xcompiler=-fno-gnu-unique * fix trt topk initialize * check in config for sdk demo * update cmake script and csrc's readme * correct config's path * add cuda include directory, otherwise compile failed in case of tensorrt8.2 * clang-format onnx2ncnn.cpp Co-authored-by: zhangli <lzhang329@gmail.com> Co-authored-by: grimoire <yaoqian@sensetime.com>
3.3 KiB
3.3 KiB
ONNX Runtime Support
Introduction of ONNX Runtime
ONNX Runtime is a cross-platform inferencing and training accelerator compatible with many popular ML/DNN frameworks. Check its github for more information.
Installation
Please note that only onnxruntime>=1.8.1 of CPU version on Linux platform is supported by now.
- Install ONNX Runtime python package
pip install onnxruntime==1.8.1
Build custom ops
Prerequisite
- Download
onnxruntime-linux
from ONNX Runtime releases, extract it, exposeONNXRUNTIME_DIR
and finally add the lib path toLD_LIBRARY_PATH
as below:
wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz
tar -zxvf onnxruntime-linux-x64-1.8.1.tgz
cd onnxruntime-linux-x64-1.8.1
export ONNXRUNTIME_DIR=$(pwd)
export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH
Note:
-
If you want to save onnxruntime env variables to bashrc, you could run
echo '# set env for onnxruntime' >> ~/.bashrc echo "export ONNXRUNTIME_DIR=${ONNXRUNTIME_DIR}" >> ~/.bashrc echo 'export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH' >> ~/.bashrc source ~/.bashrc
Build on Linux
cd ${MMDEPLOY_DIR} # To MMDeploy root directory
mkdir build
cd build
cmake -DMMDEPLOY_TARGET_BACKENDS=ort -DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} ..
make -j10
How to convert a model
- You could follow the instructions of tutorial How to convert model
List of supported custom ops
Operator | CPU | GPU | MMDeploy Releases |
---|---|---|---|
RoIAlign | Y | N | master |
grid_sampler | Y | N | master |
MMCVModulatedDeformConv2d | Y | N | master |
How to add a new custom op
Reminder
- The custom operator is not included in supported operator list in ONNX Runtime.
- The custom operator should be able to be exported to ONNX.
Main procedures
Take custom operator roi_align
for example.
- Create a
roi_align
directory in ONNX Runtime source directorybackend_ops/onnxruntime/
- Add header and source file into
roi_align
directorybackend_ops/onnxruntime/roi_align/
- Add unit test into
tests/test_ops/test_ops.py
Check here for examples.
Finally, welcome to send us PR of adding custom operators for ONNX Runtime in MMDeploy. 🤓
FAQs
- None