mmdeploy/docs/backends/onnxruntime.md
lvhan028 36124f6205
Merge sdk (#251)
* check in cmake

* move backend_ops to csrc/backend_ops

* check in preprocess, model, some codebase and their c-apis

* check in CMakeLists.txt

* check in parts of test_csrc

* commit everything else

* add readme

* update core's BUILD_INTERFACE directory

* skip codespell on third_party

* update trt_net and ort_net's CMakeLists

* ignore clion's build directory

* check in pybind11

* add onnx.proto. Remove MMDeploy's dependency on ncnn's source code

* export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON

* remove useless message

* target include directory is wrong

* change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net

* skip install directory

* update project's cmake

* remove useless code

* set CMAKE_BUILD_TYPE to Release by force if it isn't set by user

* update custom ops CMakeLists

* pass object target's source lists

* fix lint end-of-file

* fix lint: trailing whitespace

* fix codespell hook

* remove bicubic_interpolate to csrc/backend_ops/

* set MMDEPLOY_BUILD_SDK OFF

* change custom ops build command

* add spdlog installation command

* update docs on how to checkout pybind11

* move bicubic_interpolate to backend_ops/tensorrt directory

* remove useless code

* correct cmake

* fix typo

* fix typo

* fix install directory

* correct sdk's readme

* set cub dir when cuda version < 11.0

* change directory where clang-format will apply to

* fix build command

* add .clang-format

* change clang-format style from google to file

* reformat csrc/backend_ops

* format sdk's code

* turn off clang-format for some files

* add -Xcompiler=-fno-gnu-unique

* fix trt topk initialize

* check in config for sdk demo

* update cmake script and csrc's readme

* correct config's path

* add cuda include directory, otherwise compile failed in case of tensorrt8.2

* clang-format onnx2ncnn.cpp

Co-authored-by: zhangli <lzhang329@gmail.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00

91 lines
3.3 KiB
Markdown

## ONNX Runtime Support
### Introduction of ONNX Runtime
**ONNX Runtime** is a cross-platform inferencing and training accelerator compatible with many popular ML/DNN frameworks. Check its [github](https://github.com/microsoft/onnxruntime) for more information.
### Installation
*Please note that only **onnxruntime>=1.8.1** of CPU version on Linux platform is supported by now.*
- Install ONNX Runtime python package
```bash
pip install onnxruntime==1.8.1
```
### Build custom ops
#### Prerequisite
- Download `onnxruntime-linux` from ONNX Runtime [releases](https://github.com/microsoft/onnxruntime/releases/tag/v1.8.1), extract it, expose `ONNXRUNTIME_DIR` and finally add the lib path to `LD_LIBRARY_PATH` as below:
```bash
wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz
tar -zxvf onnxruntime-linux-x64-1.8.1.tgz
cd onnxruntime-linux-x64-1.8.1
export ONNXRUNTIME_DIR=$(pwd)
export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH
```
Note:
- If you want to save onnxruntime env variables to bashrc, you could run
```bash
echo '# set env for onnxruntime' >> ~/.bashrc
echo "export ONNXRUNTIME_DIR=${ONNXRUNTIME_DIR}" >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc
```
#### Build on Linux
```bash
cd ${MMDEPLOY_DIR} # To MMDeploy root directory
mkdir build
cd build
cmake -DMMDEPLOY_TARGET_BACKENDS=ort -DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR} ..
make -j10
```
### How to convert a model
- You could follow the instructions of tutorial [How to convert model](../tutorials/how_to_convert_model.md)
### List of supported custom ops
| Operator | CPU | GPU | MMDeploy Releases |
|:-----------------------------------------------------------------------------|:---:|:---:|:------------------|
| [RoIAlign](../ops/onnxruntime.md#roialign) | Y | N | master |
| [grid_sampler](../ops/onnxruntime.md#grid_sampler) | Y | N | master |
| [MMCVModulatedDeformConv2d](../ops/onnxruntime.md#mmcvmodulateddeformconv2d) | Y | N | master |
### How to add a new custom op
#### Reminder
- The custom operator is not included in [supported operator list](https://github.com/microsoft/onnxruntime/blob/master/docs/OperatorKernels.md) in ONNX Runtime.
- The custom operator should be able to be exported to ONNX.
#### Main procedures
Take custom operator `roi_align` for example.
1. Create a `roi_align` directory in ONNX Runtime source directory `backend_ops/onnxruntime/`
2. Add header and source file into `roi_align` directory `backend_ops/onnxruntime/roi_align/`
3. Add unit test into `tests/test_ops/test_ops.py`
Check [here](../../tests/test_ops/test_ops.py) for examples.
**Finally, welcome to send us PR of adding custom operators for ONNX Runtime in MMDeploy.** :nerd_face:
### FAQs
- None
### References
- [How to export Pytorch model with custom op to ONNX and run it in ONNX Runtime](https://github.com/onnx/tutorials/blob/master/PyTorchCustomOperator/README.md)
- [How to add a custom operator/kernel in ONNX Runtime](https://github.com/microsoft/onnxruntime/blob/master/docs/AddingCustomOp.md)