mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* executor prototype * add split/when_all * fix GCC build * WIP let_value * fix let_value * WIP ensure_started * ensure_started & start_detached * fix let_value + when_all combo on MSVC 142 * fix static thread pool * generic just, then, let_value, sync_wait * minor * generic split and when_all * fully generic sender adapters * when_all: workaround for GCC7 * support legacy spdlog * fix memleak * bulk * static detector * fix bulk & first pipeline * bulk for static thread pools * fix on MSVC * WIP async batch submission * WIP collation * async batch * fix detector * fix async detector * fix * fix * debug * fix cuda allocator * WIP type erased executor * better type erasure * simplify C API impl * Expand & type erase TC * deduction guide for type erased senders * fix GCC build * when_all for arrays of Value senders * WIP pipeline v2 * WIP pipeline parser * WIP timed batch operation * add registry * experiment * fix pipeline * naming * fix mem-leak * fix deferred batch operation * WIP * WIP configurable scheduler * WIP configurable scheduler * add comment * parse scheduler config * force link schedulers * WIP pipeable sender * WIP CPO * ADL isolation and dismantle headers * type erase single thread context * fix MSVC build * CPO * replace decay_t with remove_cvref_t * structure adjustment * structure adjustment * apply CPOs & C API rework * refine C API * detector async C API * adjust detector async C API * # Conflicts: # csrc/apis/c/detector.cpp * fix when_all for type erased senders * support void return for Then * async detector * fix some CPOs * minor * WIP rework capture mechanism for type erased types * minor fix * fix MSVC build * move expand.h to execution * make `Expand` pipeable * fix type erased * un-templatize `_TypeErasedOperation` * re-work C API * remove async_detector C API * fix pipeline * add flatten & unflatten * fix flatten & unflatten * add aync OCR demo * config executor for nodes & better executor API * working async OCR example * minor * dynamic batch via scheduler * dynamic batch on `Value` * fix MSVC build * type erase dynamic batch scheduler * sender as Python Awaitable * naming * naming * add docs * minor * merge tmp branch * unify C APIs * fix ocr * unify APIs * fix typo * update async OCR demo * add v3 API text recognizer * fix v3 API * fix lint * add license info & reformat * add demo async_ocr_v2 * revert files * revert files * resolve link issues * fix scheduler linkage for shared libs * fix license header * add docs for `mmdeploy_executor_split` * add missing `mmdeploy_executor_transfer_just` and `mmdeploy_executor_execute` * make `TimedSingleThreadContext` header only * fix lint * simplify type-erased sender
158 lines
4.9 KiB
C++
158 lines
4.9 KiB
C++
// Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
#include "apis/c/segmentor.h"
|
|
|
|
#include "apis/c/common_internal.h"
|
|
#include "apis/c/handle.h"
|
|
#include "apis/c/pipeline.h"
|
|
#include "codebase/mmseg/mmseg.h"
|
|
#include "core/device.h"
|
|
#include "core/graph.h"
|
|
#include "core/mat.h"
|
|
#include "core/tensor.h"
|
|
#include "core/utils/formatter.h"
|
|
|
|
using namespace std;
|
|
using namespace mmdeploy;
|
|
|
|
namespace {
|
|
|
|
Value& config_template() {
|
|
// clang-format off
|
|
static Value v{
|
|
{
|
|
"pipeline", {
|
|
{"input", {"img"}},
|
|
{"output", {"mask"}},
|
|
{
|
|
"tasks", {
|
|
{
|
|
{"name", "segmentation"},
|
|
{"type", "Inference"},
|
|
{"params", {{"model", "TBD"}}},
|
|
{"input", {"img"}},
|
|
{"output", {"mask"}}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
// clang-format on
|
|
return v;
|
|
}
|
|
|
|
int mmdeploy_segmentor_create_impl(mm_model_t model, const char* device_name, int device_id,
|
|
mmdeploy_exec_info_t exec_info, mm_handle_t* handle) {
|
|
auto config = config_template();
|
|
config["pipeline"]["tasks"][0]["params"]["model"] = *static_cast<Model*>(model);
|
|
|
|
return mmdeploy_pipeline_create(Cast(&config), device_name, device_id, exec_info, handle);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
int mmdeploy_segmentor_create(mm_model_t model, const char* device_name, int device_id,
|
|
mm_handle_t* handle) {
|
|
return mmdeploy_segmentor_create_impl(model, device_name, device_id, nullptr, handle);
|
|
}
|
|
|
|
int mmdeploy_segmentor_create_by_path(const char* model_path, const char* device_name,
|
|
int device_id, mm_handle_t* handle) {
|
|
mm_model_t model{};
|
|
if (auto ec = mmdeploy_model_create_by_path(model_path, &model)) {
|
|
return ec;
|
|
}
|
|
auto ec = mmdeploy_segmentor_create_impl(model, device_name, device_id, nullptr, handle);
|
|
mmdeploy_model_destroy(model);
|
|
return ec;
|
|
}
|
|
|
|
int mmdeploy_segmentor_apply(mm_handle_t handle, const mm_mat_t* mats, int mat_count,
|
|
mm_segment_t** results) {
|
|
wrapped<mmdeploy_value_t> input;
|
|
if (auto ec = mmdeploy_segmentor_create_input(mats, mat_count, input.ptr())) {
|
|
return ec;
|
|
}
|
|
wrapped<mmdeploy_value_t> output;
|
|
if (auto ec = mmdeploy_segmentor_apply_v2(handle, input, output.ptr())) {
|
|
return ec;
|
|
}
|
|
if (auto ec = mmdeploy_segmentor_get_result(output, results)) {
|
|
return ec;
|
|
}
|
|
return MM_SUCCESS;
|
|
}
|
|
|
|
void mmdeploy_segmentor_release_result(mm_segment_t* results, int count) {
|
|
if (results == nullptr) {
|
|
return;
|
|
}
|
|
|
|
for (auto i = 0; i < count; ++i) {
|
|
delete[] results[i].mask;
|
|
}
|
|
delete[] results;
|
|
}
|
|
|
|
void mmdeploy_segmentor_destroy(mm_handle_t handle) {
|
|
if (handle != nullptr) {
|
|
auto segmentor = static_cast<AsyncHandle*>(handle);
|
|
delete segmentor;
|
|
}
|
|
}
|
|
|
|
int mmdeploy_segmentor_create_v2(mm_model_t model, const char* device_name, int device_id,
|
|
mmdeploy_exec_info_t exec_info, mm_handle_t* handle) {
|
|
return mmdeploy_segmentor_create_impl(model, device_name, device_id, exec_info, handle);
|
|
}
|
|
|
|
int mmdeploy_segmentor_create_input(const mm_mat_t* mats, int mat_count, mmdeploy_value_t* value) {
|
|
return mmdeploy_common_create_input(mats, mat_count, value);
|
|
}
|
|
|
|
int mmdeploy_segmentor_apply_v2(mm_handle_t handle, mmdeploy_value_t input,
|
|
mmdeploy_value_t* output) {
|
|
return mmdeploy_pipeline_apply(handle, input, output);
|
|
}
|
|
|
|
int mmdeploy_segmentor_apply_async(mm_handle_t handle, mmdeploy_sender_t input,
|
|
mmdeploy_sender_t* output) {
|
|
return mmdeploy_pipeline_apply_async(handle, input, output);
|
|
}
|
|
|
|
int mmdeploy_segmentor_get_result(mmdeploy_value_t output, mm_segment_t** results) {
|
|
try {
|
|
const auto& value = Cast(output)->front();
|
|
|
|
size_t image_count = value.size();
|
|
|
|
auto deleter = [&](mm_segment_t* p) {
|
|
mmdeploy_segmentor_release_result(p, static_cast<int>(image_count));
|
|
};
|
|
unique_ptr<mm_segment_t[], decltype(deleter)> _results(new mm_segment_t[image_count]{},
|
|
deleter);
|
|
auto results_ptr = _results.get();
|
|
for (auto i = 0; i < image_count; ++i, ++results_ptr) {
|
|
auto& output_item = value[i];
|
|
MMDEPLOY_DEBUG("the {}-th item in output: {}", i, output_item);
|
|
auto segmentor_output = from_value<mmseg::SegmentorOutput>(output_item);
|
|
results_ptr->height = segmentor_output.height;
|
|
results_ptr->width = segmentor_output.width;
|
|
results_ptr->classes = segmentor_output.classes;
|
|
auto mask_size = results_ptr->height * results_ptr->width;
|
|
results_ptr->mask = new int[mask_size];
|
|
const auto& mask = segmentor_output.mask;
|
|
std::copy_n(mask.data<int>(), mask_size, results_ptr->mask);
|
|
}
|
|
*results = _results.release();
|
|
return MM_SUCCESS;
|
|
|
|
} catch (const std::exception& e) {
|
|
MMDEPLOY_ERROR("exception caught: {}", e.what());
|
|
} catch (...) {
|
|
MMDEPLOY_ERROR("unknown exception caught");
|
|
}
|
|
return MM_E_FAIL;
|
|
}
|