mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* feat(tools): add onnx2ncnn_quant_table * feat(tools): add quantization image dataset * feat(tools): add image dataset * feat(tools/deploy.py): support quant * fix(CI): lint * fix(CI): format * docs(zh_cn): add quantization usage * docs(zh_cn): add benchmark * feat(tools): add onnx2ncnn_quant_table * docs(zh_cn): add more test result * CI(github): add quant script * CI(.github/scripts): add test quant * fix(CI): remove pushd and popd * feat(CI): debug * fix(CI): path error * fix(CI): fix path * fix(CI): install wget * fix(CI): review advices * improvement(mmdeploy): review advice * fix(tools): rename to onnx2ncnn_quant_table.py * improvement(tools): rename file * improvement(test): remove useless * fix(tools/quant_image_dataset): remove loadFile in test.pipeline * docs(quantization.md): update description * fix(CI): protobuf version * fix(CI): pip install * docs(quantization): review advice * fix(CI): revert mmcv version * fix(CI): udpate pb version * fix(CI): update
1.3 KiB
1.3 KiB
量化测试结果
目前 mmdeploy 支持 ncnn 量化
ncnn 量化
分类任务
model | dataset | fp32 top-1 (%) | int8 top-1 (%) |
---|---|---|---|
ResNet-18 | Cifar10 | 94.82 | 94.83 |
ResNeXt-32x4d-50 | ImageNet-1k | 77.90 | 78.20* |
MobileNet V2 | ImageNet-1k | 71.86 | 71.43* |
HRNet-W18* | ImageNet-1k | 76.75 | 76.25* |
备注:
- 因为 imagenet-1k 数据量很大、ncnn 未正式发布 Vulkan int8 版本,考虑到 CPU 运行时间,仅用部分测试集(4000/50000)
- 量化后精度会有差异,分类模型涨点 1% 以内是正常情况
OCR 检测任务
model | dataset | fp32 hmean | int8 hmean |
---|---|---|---|
PANet | ICDAR2015 | 0.795 | 0.792 @thr=0.9 |
备注:mmocr 使用 shapely
计算 IoU,实现方法会导致轻微的精度差异