mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* feat(tools): add onnx2ncnn_quant_table * feat(tools): add quantization image dataset * feat(tools): add image dataset * feat(tools/deploy.py): support quant * fix(CI): lint * fix(CI): format * docs(zh_cn): add quantization usage * docs(zh_cn): add benchmark * feat(tools): add onnx2ncnn_quant_table * docs(zh_cn): add more test result * CI(github): add quant script * CI(.github/scripts): add test quant * fix(CI): remove pushd and popd * feat(CI): debug * fix(CI): path error * fix(CI): fix path * fix(CI): install wget * fix(CI): review advices * improvement(mmdeploy): review advice * fix(tools): rename to onnx2ncnn_quant_table.py * improvement(tools): rename file * improvement(test): remove useless * fix(tools/quant_image_dataset): remove loadFile in test.pipeline * docs(quantization.md): update description * fix(CI): protobuf version * fix(CI): pip install * docs(quantization): review advice * fix(CI): revert mmcv version * fix(CI): udpate pb version * fix(CI): update
27 lines
1.3 KiB
Markdown
27 lines
1.3 KiB
Markdown
# 量化测试结果
|
||
|
||
目前 mmdeploy 支持 ncnn 量化
|
||
|
||
## ncnn 量化
|
||
|
||
### 分类任务
|
||
|
||
|model|dataset|fp32 top-1 (%)|int8 top-1 (%)|
|
||
|:-:|:-:|:-:|:-:|
|
||
|[ResNet-18](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_8xb16_cifar10.py)|Cifar10|94.82|94.83|
|
||
|[ResNeXt-32x4d-50](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py)|ImageNet-1k|77.90|78.20*|
|
||
|[MobileNet V2](https://github.com/open-mmlab/mmclassification/blob/master/configs/mobilenet_v2/mobilenet-v2_8xb32_in1k.py)|ImageNet-1k|71.86|71.43*|
|
||
|[HRNet-W18*](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py)|ImageNet-1k|76.75|76.25*|
|
||
|
||
备注:
|
||
* 因为 imagenet-1k 数据量很大、ncnn 未正式发布 Vulkan int8 版本,考虑到 CPU 运行时间,仅用部分测试集(4000/50000)
|
||
* 量化后精度会有差异,分类模型涨点 1% 以内是正常情况
|
||
|
||
### OCR 检测任务
|
||
|
||
|model|dataset|fp32 hmean|int8 hmean|
|
||
|:-:|:-:|:-:|:-:|
|
||
|[PANet](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/panet/panet_r18_fpem_ffm_600e_icdar2015.py)|ICDAR2015|0.795|0.792 @thr=0.9|
|
||
|
||
备注:[mmocr](https://github.com/open-mmlab/mmocr) 使用 `shapely` 计算 IoU,实现方法会导致轻微的精度差异
|