mmdeploy/tests/test_csrc/net/test_net.cpp
lvhan028 36124f6205
Merge sdk (#251)
* check in cmake

* move backend_ops to csrc/backend_ops

* check in preprocess, model, some codebase and their c-apis

* check in CMakeLists.txt

* check in parts of test_csrc

* commit everything else

* add readme

* update core's BUILD_INTERFACE directory

* skip codespell on third_party

* update trt_net and ort_net's CMakeLists

* ignore clion's build directory

* check in pybind11

* add onnx.proto. Remove MMDeploy's dependency on ncnn's source code

* export MMDeployTargets only when MMDEPLOY_BUILD_SDK is ON

* remove useless message

* target include directory is wrong

* change target name from mmdeploy_ppl_net to mmdeploy_pplnn_net

* skip install directory

* update project's cmake

* remove useless code

* set CMAKE_BUILD_TYPE to Release by force if it isn't set by user

* update custom ops CMakeLists

* pass object target's source lists

* fix lint end-of-file

* fix lint: trailing whitespace

* fix codespell hook

* remove bicubic_interpolate to csrc/backend_ops/

* set MMDEPLOY_BUILD_SDK OFF

* change custom ops build command

* add spdlog installation command

* update docs on how to checkout pybind11

* move bicubic_interpolate to backend_ops/tensorrt directory

* remove useless code

* correct cmake

* fix typo

* fix typo

* fix install directory

* correct sdk's readme

* set cub dir when cuda version < 11.0

* change directory where clang-format will apply to

* fix build command

* add .clang-format

* change clang-format style from google to file

* reformat csrc/backend_ops

* format sdk's code

* turn off clang-format for some files

* add -Xcompiler=-fno-gnu-unique

* fix trt topk initialize

* check in config for sdk demo

* update cmake script and csrc's readme

* correct config's path

* add cuda include directory, otherwise compile failed in case of tensorrt8.2

* clang-format onnx2ncnn.cpp

Co-authored-by: zhangli <lzhang329@gmail.com>
Co-authored-by: grimoire <yaoqian@sensetime.com>
2021-12-07 10:57:55 +08:00

100 lines
2.4 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include <fstream>
#include <iostream>
#include <sstream>
#include "catch.hpp"
#include "core/model.h"
#include "core/net.h"
using namespace mmdeploy;
static Value ReadFileContent(const char* path) {
std::ifstream ifs(path, std::ios::binary);
ifs.seekg(0, std::ios::end);
auto size = ifs.tellg();
ifs.seekg(0, std::ios::beg);
Value::Binary bin(size);
ifs.read((char*)bin.data(), size);
return bin;
}
template <typename T, typename V = typename mmdeploy::uncvref_t<T>::value_type,
std::enable_if_t<!std::is_same_v<V, bool> && std::is_integral_v<V>, int> = 0>
std::string shape_string(const T& v) {
std::stringstream ss;
ss << "(";
auto first = true;
for (const auto& x : v) {
if (!first) {
ss << ", ";
} else {
first = false;
}
ss << x;
}
ss << ")";
return ss.str();
}
TEST_CASE("test pplnn", "[net]") {
auto backend = "pplnn";
Model model("../../resnet50");
REQUIRE(model);
auto img_path = "../../sea_lion.txt";
auto creator = Registry<Net>::Get().GetCreator(backend);
REQUIRE(creator);
Device device{"cpu"};
auto stream = Stream::GetDefault(device);
// clang-format off
Value net_config{
{"context", {
{"device", device},
{"model", model},
{"stream", stream}
}
},
{"name", "resnet50"}
};
// clang-format on
auto net = creator->Create(net_config);
std::vector<float> img(3 * 224 * 224);
{
std::ifstream ifs(img_path);
REQUIRE(ifs.is_open());
for (auto& x : img) {
ifs >> x;
}
}
std::vector<TensorShape> input_shape{{1, 3, 224, 224}};
REQUIRE(net->Reshape(input_shape));
auto inputs = net->GetInputTensors().value();
for (auto& tensor : inputs) {
std::cout << "input: " << tensor.name() << " " << shape_string(tensor.shape()) << "\n";
}
REQUIRE(inputs.front().CopyFrom(img.data(), stream));
REQUIRE(stream.Wait());
REQUIRE(net->Forward());
auto outputs = net->GetOutputTensors().value();
for (auto& tensor : outputs) {
std::cout << "output: " << tensor.name() << " " << shape_string(tensor.shape()) << "\n";
}
std::vector<float> logits(1000);
REQUIRE(outputs.front().CopyTo(logits.data(), stream));
REQUIRE(stream.Wait());
auto cls_id = std::max_element(logits.begin(), logits.end()) - logits.begin();
std::cout << "class id = " << cls_id << "\n";
}