mmdeploy/demo/csrc/c/batch_image_classification.cpp

101 lines
3.1 KiB
C++

#include <fstream>
#include <opencv2/imgcodecs/imgcodecs.hpp>
#include <string>
#include "mmdeploy/classifier.h"
static int batch_inference(mmdeploy_classifier_t classifier,
const std::vector<int>& image_ids,
const std::vector<mmdeploy_mat_t>& mats);
int main(int argc, char* argv[]) {
if (argc < 5) {
fprintf(stderr, "usage:\n image_classification device_name dump_model_directory "
"imagelist.txt batch_size\n");
return 1;
}
auto device_name = argv[1];
auto model_path = argv[2];
mmdeploy_classifier_t classifier{};
int status{};
status = mmdeploy_classifier_create_by_path(model_path, device_name, 0, &classifier);
if (status != MMDEPLOY_SUCCESS) {
fprintf(stderr, "failed to create classifier, code: %d\n", (int)status);
return 1;
}
// `file_path` is the path of an image list file
std::string file_path = argv[3];
const int batch = std::stoi(argv[argc-1]);
// read image paths from the file
std::ifstream ifs(file_path);
std::string img_path;
std::vector<std::string> img_paths;
while (ifs >> img_path) {
img_paths.emplace_back(std::move(img_path));
}
// read images and process batch inference
std::vector<cv::Mat> images;
std::vector<int> image_ids;
std::vector<mmdeploy_mat_t> mats;
for (int i = 0; i < (int)img_paths.size(); ++i) {
auto img = cv::imread(img_paths[i]);
if (!img.data) {
fprintf(stderr, "failed to load image: %s\n", img_paths[i].c_str());
continue;
}
images.push_back(img);
image_ids.push_back(i);
mmdeploy_mat_t mat{
img.data, img.rows, img.cols, 3, MMDEPLOY_PIXEL_FORMAT_BGR, MMDEPLOY_DATA_TYPE_UINT8};
mats.push_back(mat);
// process batch inference
if ((int)mats.size() == batch) {
if (batch_inference(classifier, image_ids, mats) != 0) {
continue;
}
// clear buffer for next batch
mats.clear();
image_ids.clear();
images.clear();
}
}
// process batch inference if there are still unhandled images
if (!mats.empty()) {
(void)batch_inference(classifier, image_ids, mats);
}
mmdeploy_classifier_destroy(classifier);
return 0;
}
int batch_inference(mmdeploy_classifier_t classifier, const std::vector<int>& image_ids,
const std::vector<mmdeploy_mat_t>& mats) {
mmdeploy_classification_t* res{};
int* res_count{};
auto status = mmdeploy_classifier_apply(classifier, mats.data(), (int)mats.size(),
&res, &res_count);
if (status != MMDEPLOY_SUCCESS) {
fprintf(stderr, "failed to apply classifier to batch images %d, code: %d\n",
(int)mats.size(), (int)status);
return 1;
}
// print the inference results
auto res_ptr = res;
for (int j = 0; j < (int)mats.size(); ++j) {
fprintf(stderr, "results in the %d-th image:\n", image_ids[j]);
for (int k = 0; k < res_count[j]; ++k, ++res_ptr) {
fprintf(stderr, " label: %d, score: %.4f\n", res_ptr->label_id, res_ptr->score);
}
}
// release results buffer
mmdeploy_classifier_release_result(res, res_count, (int)mats.size());
return 0;
}