mmdeploy/tools/deploy.py

179 lines
5.6 KiB
Python

import argparse
import logging
import os.path as osp
from functools import partial
import mmcv
import torch.multiprocessing as mp
from torch.multiprocessing import Process, set_start_method
from mmdeploy.apis import (assert_cfg_valid, extract_model, inference_model,
torch2onnx)
def parse_args():
parser = argparse.ArgumentParser(description='Export model to backend.')
parser.add_argument('deploy_cfg', help='deploy config path')
parser.add_argument('model_cfg', help='model config path')
parser.add_argument('checkpoint', help='model checkpoint path')
parser.add_argument(
'img', help='image used to convert model and test model')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--device', help='device used for conversion', default='cpu')
parser.add_argument(
'--log-level',
help='set log level',
default='INFO',
choices=list(logging._nameToLevel.keys()))
parser.add_argument(
'--show', action='store_true', help='Show detection outputs')
args = parser.parse_args()
return args
def target_wrapper(target, log_level, *args, **kwargs):
logger = logging.getLogger()
logger.level
logger.setLevel(log_level)
return target(*args, **kwargs)
def create_process(name, target, args, kwargs, ret_value=None):
logging.info(f'{name} start.')
log_level = logging.getLogger().level
wrap_func = partial(target_wrapper, target, log_level)
process = Process(target=wrap_func, args=args, kwargs=kwargs)
process.start()
process.join()
if ret_value is not None:
if ret_value.value != 0:
logging.error(f'{name} failed.')
exit()
else:
logging.info(f'{name} success.')
def main():
args = parse_args()
set_start_method('spawn')
logger = logging.getLogger()
logger.setLevel(args.log_level)
deploy_cfg_path = args.deploy_cfg
model_cfg_path = args.model_cfg
checkpoint_path = args.checkpoint
# load deploy_cfg
deploy_cfg = mmcv.Config.fromfile(deploy_cfg_path)
assert_cfg_valid(deploy_cfg, model_cfg_path)
# create work_dir if not
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
ret_value = mp.Value('d', 0, lock=False)
# convert onnx
onnx_save_file = deploy_cfg['pytorch2onnx']['save_file']
create_process(
'torch2onnx',
target=torch2onnx,
args=(args.img, args.work_dir, onnx_save_file, deploy_cfg_path,
model_cfg_path, checkpoint_path),
kwargs=dict(device=args.device, ret_value=ret_value),
ret_value=ret_value)
# convert backend
onnx_files = [osp.join(args.work_dir, onnx_save_file)]
# split model
apply_marks = deploy_cfg.get('apply_marks', False)
if apply_marks:
assert hasattr(deploy_cfg, 'split_params')
split_params = deploy_cfg.get('split_params', None)
origin_onnx_file = onnx_files[0]
onnx_files = []
for split_param in split_params:
save_file = split_param['save_file']
save_path = osp.join(args.work_dir, save_file)
start = split_param['start']
end = split_param['end']
create_process(
f'split model {save_file} with start: {start}, end: {end}',
extract_model,
args=(origin_onnx_file, start, end),
kwargs=dict(save_file=save_path, ret_value=ret_value),
ret_value=ret_value)
onnx_files.append(save_path)
backend_files = onnx_files
# convert backend
backend = deploy_cfg.get('backend', 'default')
if backend == 'tensorrt':
assert hasattr(deploy_cfg, 'tensorrt_params')
tensorrt_params = deploy_cfg['tensorrt_params']
model_params = tensorrt_params.get('model_params', [])
assert len(model_params) == len(onnx_files)
from mmdeploy.apis.tensorrt import onnx2tensorrt
backend_files = []
for model_id, model_param, onnx_path in zip(
range(len(onnx_files)), model_params, onnx_files):
onnx_name = osp.splitext(osp.split(onnx_path)[1])[0]
save_file = model_param.get('save_file', onnx_name + '.engine')
create_process(
f'onnx2tensorrt of {onnx_path}',
target=onnx2tensorrt,
args=(args.work_dir, save_file, model_id, deploy_cfg_path,
onnx_path),
kwargs=dict(device=args.device, ret_value=ret_value),
ret_value=ret_value)
backend_files.append(osp.join(args.work_dir, save_file))
# check model outputs by visualization
codebase = deploy_cfg['codebase']
# visualize model of the backend
create_process(
f'visualize {backend} model',
target=inference_model,
args=(model_cfg_path, backend_files, args.img),
kwargs=dict(
codebase=codebase,
backend=backend,
device=args.device,
output_file=f'output_{backend}.jpg',
show_result=args.show,
ret_value=ret_value),
ret_value=ret_value)
# visualize pytorch model
create_process(
'visualize pytorch model',
target=inference_model,
args=(model_cfg_path, [checkpoint_path], args.img),
kwargs=dict(
codebase=codebase,
backend='pytorch',
device=args.device,
output_file='output_pytorch.jpg',
show_result=args.show,
ret_value=ret_value),
ret_value=ret_value)
logging.info('All process success.')
if __name__ == '__main__':
main()