mmdeploy/csrc/mmdeploy/preprocess/cuda/normalize_impl.cpp
2022-11-10 15:25:33 +08:00

106 lines
3.7 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include <cuda_runtime.h>
#include "mmdeploy/core/utils/device_utils.h"
#include "mmdeploy/core/utils/formatter.h"
#include "mmdeploy/preprocess/transform/normalize.h"
#include "ppl/cv/cuda/cvtcolor.h"
using namespace std;
using namespace ppl::cv::cuda;
namespace mmdeploy::cuda {
template <typename T, int channels>
void Normalize(const T* src, int height, int width, int stride, float* output, const float* mean,
const float* std, bool to_rgb, cudaStream_t stream);
class NormalizeImpl : public ::mmdeploy::NormalizeImpl {
public:
explicit NormalizeImpl(const Value& args) : ::mmdeploy::NormalizeImpl(args) {}
protected:
Result<Tensor> NormalizeImage(const Tensor& tensor) override {
OUTCOME_TRY(auto src_tensor, MakeAvailableOnDevice(tensor, device_, stream_));
SyncOnScopeExit sync(stream_, src_tensor.buffer() != tensor.buffer(), src_tensor);
auto src_desc = src_tensor.desc();
int h = (int)src_desc.shape[1];
int w = (int)src_desc.shape[2];
int c = (int)src_desc.shape[3];
int stride = w * c;
TensorDesc dst_desc{device_, DataType::kFLOAT, src_desc.shape, src_desc.name};
Tensor dst_tensor{dst_desc};
auto output = dst_tensor.data<float>();
auto stream = ::mmdeploy::GetNative<cudaStream_t>(stream_);
if (DataType::kINT8 == src_desc.data_type) {
auto input = src_tensor.data<uint8_t>();
if (3 == c) {
Normalize<uint8_t, 3>(input, h, w, stride, output, arg_.mean.data(), arg_.std.data(),
arg_.to_rgb, stream);
} else if (1 == c) {
Normalize<uint8_t, 1>(input, h, w, stride, output, arg_.mean.data(), arg_.std.data(),
arg_.to_rgb, stream);
} else {
MMDEPLOY_ERROR("unsupported channels {}", c);
return Status(eNotSupported);
}
} else if (DataType::kFLOAT == src_desc.data_type) {
auto input = src_tensor.data<float>();
if (3 == c) {
Normalize<float, 3>(input, h, w, stride, output, arg_.mean.data(), arg_.std.data(),
arg_.to_rgb, stream);
} else if (1 == c) {
Normalize<float, 1>(input, h, w, stride, output, arg_.mean.data(), arg_.std.data(),
arg_.to_rgb, stream);
} else {
MMDEPLOY_ERROR("unsupported channels {}", c);
return Status(eNotSupported);
}
} else {
MMDEPLOY_ERROR("unsupported data type {}", src_desc.data_type);
assert(0);
return Status(eNotSupported);
}
return dst_tensor;
}
Result<Tensor> ConvertToRGB(const Tensor& tensor) override {
OUTCOME_TRY(auto src_tensor, MakeAvailableOnDevice(tensor, device_, stream_));
SyncOnScopeExit sync(stream_, src_tensor.buffer() != tensor.buffer(), src_tensor);
auto src_desc = src_tensor.desc();
int h = (int)src_desc.shape[1];
int w = (int)src_desc.shape[2];
int c = (int)src_desc.shape[3];
int stride = w * c;
auto stream = ::mmdeploy::GetNative<cudaStream_t>(stream_);
TensorDesc dst_desc{device_, DataType::kINT8, src_desc.shape, src_desc.name};
Tensor dst_tensor{dst_desc};
RGB2BGR<uint8_t>(stream, h, w, stride, tensor.data<uint8_t>(), stride,
dst_tensor.data<uint8_t>());
return dst_tensor;
}
};
class NormalizeImplCreator : public Creator<::mmdeploy::NormalizeImpl> {
public:
const char* GetName() const override { return "cuda"; }
int GetVersion() const override { return 1; }
std::unique_ptr<::mmdeploy::NormalizeImpl> Create(const Value& args) override {
return make_unique<NormalizeImpl>(args);
}
};
} // namespace mmdeploy::cuda
using mmdeploy::NormalizeImpl;
using mmdeploy::cuda::NormalizeImplCreator;
REGISTER_MODULE(NormalizeImpl, NormalizeImplCreator);