Chen Xin 1f56eea807 [Feature] Support feature map output for mmsegmentation (#1625)
* add feature map output for mmseg

* update api

* update demo

* fix return

* update format_shape

* fix lint

* update csharp demo

* update python demo && api

* fix coreml build

* fix lint

* better sort

* update

* update cpp demo & add missing header

* change to CHW

* update csharp api

* update isort version to 5.12.0

* fix python api

* fix log

* more detail api docs

* isort support python3.7

* remove isort change

* remove whitespace

* axes check

* remove FormatShapeImpl

* minor

* add permute tc

* remove stride buffer

(cherry picked from commit b85f34141b61ad0d70897cc6dcfef38928b673fb)
2023-02-07 21:04:20 +08:00

133 lines
4.6 KiB
C#

using System;
using System.Collections.Generic;
using OpenCvSharp;
using MMDeploy;
namespace image_segmentation
{
class Program
{
/// <summary>
/// transform input
/// </summary>
static void CvMatToMat(OpenCvSharp.Mat[] cvMats, out MMDeploy.Mat[] mats)
{
mats = new MMDeploy.Mat[cvMats.Length];
unsafe
{
for (int i = 0; i < cvMats.Length; i++)
{
mats[i].Data = cvMats[i].DataPointer;
mats[i].Height = cvMats[i].Height;
mats[i].Width = cvMats[i].Width;
mats[i].Channel = cvMats[i].Dims;
mats[i].Format = PixelFormat.BGR;
mats[i].Type = DataType.Int8;
mats[i].Device = null;
}
}
}
static void CvWaitKey()
{
Cv2.WaitKey();
}
static Vec3b[] GenPalette(int classes)
{
Random rnd = new Random(0);
Vec3b[] palette = new Vec3b[classes];
for (int i = 0; i < classes; i++)
{
byte v1 = (byte)rnd.Next(0, 255);
byte v2 = (byte)rnd.Next(0, 255);
byte v3 = (byte)rnd.Next(0, 255);
palette[i] = new Vec3b(v1, v2, v3);
}
return palette;
}
static void Main(string[] args)
{
if (args.Length != 3)
{
Console.WriteLine("usage:\n image_segmentation deviceName modelPath imagePath\n");
Environment.Exit(1);
}
string deviceName = args[0];
string modelPath = args[1];
string imagePath = args[2];
// 1. create handle
Segmentor handle = new Segmentor(modelPath, deviceName, 0);
// 2. prepare input
OpenCvSharp.Mat[] imgs = new OpenCvSharp.Mat[1] { Cv2.ImRead(imagePath, ImreadModes.Color) };
CvMatToMat(imgs, out var mats);
// 3. process
List<SegmentorOutput> output = handle.Apply(mats);
// 4. show result
OpenCvSharp.Mat colorMask = new OpenCvSharp.Mat(output[0].Height, output[0].Width, MatType.CV_8UC3, new Scalar());
Vec3b[] palette = GenPalette(output[0].Classes);
unsafe
{
byte* data = colorMask.DataPointer;
if (output[0].Mask.Length > 0)
{
fixed (int* _label = output[0].Mask)
{
int* label = _label;
for (int i = 0; i < output[0].Height; i++)
{
for (int j = 0; j < output[0].Width; j++)
{
data[0] = palette[*label][0];
data[1] = palette[*label][1];
data[2] = palette[*label][2];
data += 3;
label++;
}
}
}
}
else
{
int pos = 0;
fixed (float* _score = output[0].Score)
{
float *score = _score;
int total = output[0].Height * output[0].Width;
for (int i = 0; i < output[0].Height; i++)
{
for (int j = 0; j < output[0].Width; j++)
{
List<Tuple<float, int>> scores = new List<Tuple<float, int>>();
for (int k = 0; k < output[0].Classes; k++)
{
scores.Add(new Tuple<float, int>(score[k * total + i * output[0].Width + j], k));
}
scores.Sort();
data[0] = palette[scores[^1].Item2][0];
data[1] = palette[scores[^1].Item2][1];
data[2] = palette[scores[^1].Item2][2];
data += 3;
}
}
}
}
}
colorMask = imgs[0] * 0.5 + colorMask * 0.5;
Cv2.NamedWindow("mmseg", WindowFlags.GuiExpanded);
Cv2.ImShow("mmseg", colorMask);
CvWaitKey();
handle.Close();
}
}
}