mmdeploy/docs/zh_cn/04-supported-codebases/mmseg.md

54 lines
6.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# mmseg 模型支持列表
mmseg 是一个基于 PyTorch 的开源对象分割工具箱,也是 [OpenMMLab](https://openmmlab.com/) 项目的一部分。
## 安装 mmseg
参照 [get_started.md](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/get_started.md#installation)。
## 支持列表
| Model | OnnxRuntime | TensorRT | ncnn | PPLNN | OpenVino | Model config |
| :--------------------------- | :---------: | :------: | :--: | :---: | :------: | :--------------------------------------------------------------------------------------: |
| FCN | Y | Y | Y | Y | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/fcn) |
| PSPNet[\*](#static_shape) | Y | Y | Y | Y | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/pspnet) |
| DeepLabV3 | Y | Y | Y | Y | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/deeplabv3) |
| DeepLabV3+ | Y | Y | Y | Y | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/deeplabv3plus) |
| Fast-SCNN[\*](#static_shape) | Y | Y | N | Y | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/fastscnn) |
| UNet | Y | Y | Y | Y | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/unet) |
| ANN[\*](#static_shape) | Y | Y | N | N | N | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/ann) |
| APCNet | Y | Y | Y | N | N | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/apcnet) |
| BiSeNetV1 | Y | Y | Y | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/bisenetv1) |
| BiSeNetV2 | Y | Y | Y | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/bisenetv2) |
| CGNet | Y | Y | Y | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/cgnet) |
| DMNet | Y | N | N | N | N | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/dmnet) |
| DNLNet | Y | Y | Y | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/dnlnet) |
| EMANet | Y | Y | N | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/emanet) |
| EncNet | Y | Y | N | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/encnet) |
| ERFNet | Y | Y | Y | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/erfnet) |
| FastFCN | Y | Y | Y | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/fastfcn) |
| GCNet | Y | Y | N | N | N | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/gcnet) |
| ICNet[\*](#static_shape) | Y | Y | N | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/icnet) |
| ISANet[\*](#static_shape) | Y | Y | N | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/isanet) |
| NonLocal Net | Y | Y | Y | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/nonlocal_net) |
| OCRNet | Y | Y | Y | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/ocrnet) |
| PointRend[\*](#static_shape) | Y | Y | N | N | N | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/point_rend) |
| Semantic FPN | Y | Y | Y | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/sem_fpn) |
| STDC | Y | Y | Y | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/stdc) |
| UPerNet[\*](#static_shape) | Y | Y | N | N | N | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/upernet) |
| DANet | Y | Y | N | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/danet) |
| Segmenter[\*](#static_shape) | Y | Y | Y | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/segmenter) |
| SegFormer[\*](#static_shape) | Y | Y | N | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/segformer) |
| SETR | Y | N | N | N | Y | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/setr) |
| CCNet | N | N | N | N | N | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/ccnet) |
| PSANet | N | N | N | N | N | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/psanet) |
| DPT | N | N | N | N | N | [config](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/dpt) |
## 注意事项
- 所有 mmseg 模型仅支持 "whole" 推理模式。
- <i id=“static_shape”>PSPNetFast-SCNN</i> 仅支持静态输入,因为多数推理框架的 [nn.AdaptiveAvgPool2d](https://github.com/open-mmlab/mmsegmentation/blob/97f9670c5a4a2a3b4cfb411bcc26db16b23745f7/mmseg/models/decode_heads/psp_head.py#L38) 不支持动态输入。
- 对于仅支持静态形状的模型,应使用静态形状的部署配置文件,例如 `configs/mmseg/segmentation_tensorrt_static-1024x2048.py`